Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (8): 111-126.doi: 10.6040/j.issn.1671-7554.0.2024.1456
• Research Progress • Previous Articles
LUO Qi1,2, WANG Xia2,3,4, JIANG Meng2,3,4
CLC Number:
| [1] Sherratt S. Aphasia and dysphasia on the internet[J]. Aphasiology, 2021, 35(9): 1227-1237. [2] de Kleine N, Rose ML, Weinborn M, et al. Does gesture improve the communication success of people with aphasia: a systematic review[J]. Aphasiology, 2024, 38(3): 462-486. [3] Klingbeil J, Wawrzyniak M, Stockert A, et al. Resting-state functional connectivity: an emerging method for the study of language networks in post-stroke aphasia[J]. Brain Cogn, 2019, 131: 22-33. doi:10.1016/j.bandc.2017.08.005 [4] 刘佳, 范琳. 汉语失语症研究: 回顾与展望[J]. 山东外语教学, 2024, 45(3): 23-33. LIU Jia, FAN Lin. Studies on Chinese Aphasia: Retrospect and Prospect[J]. Shandong Foreign Language Teaching, 2024, 45(3): 23-33. [5] Adikari A, Hernandez N, Alahakoon D, et al. From concept to practice: a scoping review of the application of AI to aphasia diagnosis and management[J]. Disabil Rehabil, 2024, 46(7): 1288-1297. [6] Baldassarre A, Metcalf NV, Shulman GL, et al. Brain networks functional connectivity separates aphasic deficits in stroke[J]. Neurology, 2019, 92(2): 125-135. [7] Wang Y, Yin J, Desai RH. Topological inference on brain networks across subtypes of post-stroke aphasia[EB/OL]. 2023: 2311.01625. https://arxiv.org/abs/2311.01625v1 [8] 李国华, 陆艺, 王胜秋. 不同频率重复经颅磁刺激治疗脑梗死后失语症的疗效[J]. 山东大学学报(医学版), 2023, 61(7): 83-89. LI Guohua, LU Yi, WANG Shengqiu. Observation of the effects of different frequencies of repetitive transcranial magnetic stimulation on aphasia in postcerebral infarction patients[J]. Journal of Shandong University(Health Sciences), 2023, 61(7): 83-89. [9] Hersh D, Williamson C, Brogan E, et al. “Its day to day problems:” Experiences of people with aphasia who live alone[J]. Int J Speech Lang Pathol, 2024, 26(3): 367-379. [10] Kao SK, Chan CT. Increased risk of depression and associated symptoms in poststroke aphasia[J]. Sci Rep, 2024, 14(1): 21352. doi:10.1038/s41598-024-72742-z [11] Burfein P, Roxbury T, Doig EJ, et al. Return to work for stroke survivors with aphasia: a quantitative scoping review[J]. Neuropsychol Rehabil, 2024: 1-35. doi:10.1080/09602011.2024.2381874 [12] Mehraram R, Kries J, De Clercq P, et al. EEG reveals brain network alterations in chronic aphasia during natural speech listening[J]. Sci Rep, 2025, 15(1): 2441. doi:10.1038/s41598-025-86192-8 [13] 李笑仙, 苏薇洁, 俞璐, 等. 针刺治疗缺血性卒中后失语的机制研究[J]. 上海针灸杂志, 2025, 44(6): 660-666. LI Xiaoxian, SU Weijie, YU Lu, et al. 2024. Mechanism study of acupuncture treatment for post-ischemic stroke aphasia[J]. Shanghai Journal of Acupuncture and Moxibustion, 2025, 44(6): 660-666. [14] 姜小梅, 王萍芝. 基于静息态功能磁共振成像的慢性意识障碍脑功能网络研究进展[J]. 中西医结合心脑血管病杂志, 2024, 22(11): 1981-1984. [15] Venkadesh S, Van Horn JD. Integrative models of brain structure and dynamics: concepts, challenges, and methods[J]. Front Neurosci, 2021, 15: 752332. doi:10.3389/fnins.2021.752332 [16] Candemir C, Akram VK, Gonul AS. The impact of mental activities and age on brain network: an analysis from complex network perspective[J]. IEEE Trans Emerg Top Comput Intell, 2024, 8(4): 2791-2803. [17] Sunil G, Gowtham S, Bose A, et al. Graph neural network and machine learning analysis of functional neuroimaging for understanding schizophrenia[J]. BMC Neurosci, 2024, 25(1): 2. doi:10.1186/s12868-023-00841-0 [18] 张斌龙, 常静玲, 韩奕, 等. 基于脑功能网络分析技术下: “益髓醒神” 针刺治疗不同部位卒中后失语的案例分析[J]. 环球中医药, 2019, 12(6): 929-932. [19] 吕天丽, 马佳骏, 刘璐, 等. 卒中后基底节失语症患者针刺联合语言康复训练前后静息态脑功能网络连通性变化分析[J]. 中国医师杂志, 2023, 25(9): 1313-1318. LYU Tianli, MA Jiajun, LIU Lu, et al. Analysis of changes in connectivity of resting brain functional network before and after acupuncture combined with language rehabilitation training in patients with basal ganglia aphasia after stroke [J]. Chinese Journal of Physicians, 2023, 25(9): 1313-1318. [20] 尹涛, 何昭璇, 马培宏, 等. 针刺功能磁共振成像研究任务设计方法述评[J]. 中华中医药学刊, 2019, 37(7): 1657-1660. YIN Tao, HE Zhaoxuan, MA Peihong, et al. A narrative review of task design in acupuncture-fMRI researches[J]. Chinese Archives of Traditional Chinese Medicine, 2019, 37(7): 1657-1660. [21] Tang JP, Xiang XL, Cheng XL. The progress of functional magnetic resonance imaging in patients with poststroke aphasia[J]. J Healthc Eng, 2022, 2022: 3270534. doi:10.1155/2022/3270534 [22] Babaeeghazvini P, Rueda-Delgado LM, Gooijers J, et al. Brain structural and functional connectivity: a review of combined works of diffusion magnetic resonance imaging and electro-encephalography[J]. Front Hum Neurosci, 2021, 15: 721206. doi:10.3389/fnhum.2021.721206 [23] Sarmukadam K, Behroozmand R. Aberrant beta-band brain connectivity predicts speech motor planning deficits in post-stroke aphasia[J]. Cortex, 2022, 155: 75-89. doi:10.1016/j.cortex.2022.07.001 [24] 徐桂芝, 于洪丽, 杨硕, 等. 基于EEG的脑源定位与脑功能网络[M]. 北京: 电子工业出版社, 2021: 1-207. [25] Du YH, Fang SK, He XY, et al. A survey of brain functional network extraction methods using fMRI data[J]. Trends Neurosci, 2024, 47(8): 608-621. [26] 于春水, 马林, 张伟国. 颅脑影像诊断学[M]. 3版. 北京: 人民卫生出版社, 2019: 1-688. [27] Liu JY, Yang WX, Ma YL, et al. Effective hyper-connectivity network construction and learning: application to major depressive disorder identification[J]. Comput Biol Med, 2024, 171: 108069. doi:10.1016/j.compbiomed.2024.108069 [28] Schulze J, Sinke C, Neumann I, et al. Effects of glabellar botulinum toxin injections on resting-state functional connectivity in borderline personality disorder[J]. Eur Arch Psychiatry Clin Neurosci, 2024, 274(1): 97-107. [29] Parker AJ, Walker JC, Jordan LS, et al. Neural mechanisms of inhibitory control in preadolescent irritability: Insights from the ABCD study[J]. Biol Psychol, 2024, 192: 108856. [30] Safari M, Shalbaf R, Bagherzadeh S, et al. Classification of mental workload using brain connectivity and machine learning on electroencephalogram data[J]. Sci Rep, 2024, 14(1): 9153. doi:10.1038/s41598-024-59652-w [31] Xie JP, Zhang WD, Yu C, et al. Abnormal static and dynamic brain network connectivity associated with chronic tinnitus[J]. Neuroscience, 2024, 554: 26-33. doi:10.1016/j.neuroscience.2024.06.034 [32] Gonzalez-Burgos L, Pereira JB, Mohanty R, et al. Cortical networks underpinning compensation of verbal fluency in normal aging[J]. Cereb Cortex, 2021, 31(8): 3832-3845. [33] Riccardi N, Zhao XP, den Ouden DB, et al. Network-based statistics distinguish anomic and Brocas aphasia[J]. Brain Struct Funct, 2024, 229(9): 2237-2253. [34] Guo J, Biswal BB, Han SQ, et al. Altered dynamics of brain segregation and integration in poststroke aphasia[J]. Hum Brain Mapp, 2019, 40(11): 3398-3409. [35] Tao W, Lu X, Yuan S, et al. Unstable functional brain states and reduced cerebro-cerebellar modularity in elderly individuals with subjective cognitive decline[J]. Neuroimage, 2025, 305: 120969. doi:10.1016/j.neuroimage.2024.120969 [36] 陈芷涵, 王容, 李郁欣, 等. 功能磁共振成像动态脑功能连接网络分析方法及其在脑疾病中的应用[J]. 中国临床神经科学, 2020, 28(5): 571-578. CHEN Zhihan, WANG Rong, LI Yuxin, et al. Dynamic function connectivity network analysis methods of functional magnetic resonance image and its application in brain diseases[J]. Chinese Journal of Clinical Neurosciences, 2020, 28(5): 571-578. [37] Truzman T, Rochon E, Meltzer J, et al. Simultaneous normalization and compensatory changes in right hemisphere connectivity during aphasia therapy[J]. Brain Sci, 2021, 11(10): 1330. doi:10.3390/brainsci11101330 [38] Gonzalez-Burgos L, Pereira JB, Mohanty R, et al. Cortical networks underpinning compensation of verbal fluency in normal aging[J]. Cereb Cortex, 2021, 31(8): 3832-3845. [39] Chen XY, Chen LT, Zheng SN, et al. Disrupted brain connectivity networks in aphasia revealed by resting-state fMRI[J]. Front Aging Neurosci, 2021, 13: 666301. doi:10.3389/fnagi.2021.666301 [40] 樊瑞文, 李晓琳, 黄幸, 等. 基于语言双流模型的卒中后失语右脑功能网络研究[J]. 中国康复理论与实践, 2020, 26(5): 572-578. FAN Ruiwen, LI Xiaolin, HUANG Xing, et al. Functional connectivities in right hemisphere for post-stroke aphasia: based on dual stream model[J]. Chinese Journal of Rehabilitation Theory and Practice, 2020, 26(5): 572-578. [41] Utianski RL, Botha H, Caviness JN, et al. A preliminary report of network electroencephalographic measures in primary progressive apraxia of speech and aphasia[J]. Brain Sci, 2022, 12(3): 378. doi:10.3390/brainsci12030378 [42] Li HZ, Zhang H, Xu S, et al. Altered spontaneous brain activity in poststroke aphasia: a resting-state fMRI study[J]. Brain Sci, 2023, 13(2): 300. doi:10.3390/brainsci13020300 [43] Mehraram R, Kries J, De Clercq P, et al. EEG reveals brain network alterations in chronic aphasia during natural speech listening[J]. Sci Rep, 2025, 15: 2441. doi:10.1038/s41598-025-86192-8 [44] Lin F, Cheng SQ, Qi DQ, et al. Brain hothubs and dark functional networks: correlation analysis between amplitude and connectivity for Brocas aphasia[J]. PeerJ, 2020, 8: e10057. doi:10.7717/peerj.10057 [45] 林枫, 江钟立, 程少强, 等. 非流畅性失语症脑功能网络分析[J]. 中国康复医学杂志, 2017, 32(3): 269-274. LIN Feng, JIANG Zhongli, CHENG Shaoqiang, et al. Functional brain network analyses of language functions in non-fluent aphasics[J]. Chinese Journal of Rehabilitation Medicine, 2017, 32(3): 269-274. [46] Griffis JC, Nenert R, Allendorfer JB, et al. Parallel ICA reveals linked patterns of structural damage and fMRI language task activation in chronic post-stroke aphasia[J]. arXiv E Prints, 2016: arXiv: 1610.04201. doi:10.48550/arXiv.1610.04201 [47] López-Barroso D, Paredes-Pacheco J, Torres-Prioris MJ, et al. Brain structural and functional correlates of the heterogenous progression of mixed transcortical aphasia[J]. Brain Struct Funct, 2023, 228(5): 1347-1364. [48] Guo J, Yang M, Biswal BB, et al. Abnormal functional connectivity density in post-stroke aphasia[J]. Brain Topogr, 2019, 32(2): 271-282. [49] Han LY, Ke J, Zhang DW, et al. Altered functional connectivity in language and non-language brain networks in patients diagnosed with acute post-stroke aphasia[J]. Clin Neurol Neurosurg, 2023, 235: 108044. doi:10.1016/j.clineuro.2023.108044 [50] Engel AK, Fries P. Beta-band oscillations: signalling the status quo?[J]. Curr Opin Neurobiol, 2010, 20(2): 156-165. [51] Schomer DL, Lopes da Silva FH. Niedermeyers electroencephalography: basic principles, clinical applications, and related fields(7th ed.)[M]. Oxford: Oxford University Press, 2017: 1-1264. [52] Sarmukadam K, Behroozmand R. Aberrant beta-band brain connectivity predicts speech motor planning deficits in post-stroke aphasia[J]. Cortex, 2022, 155: 75-89. doi:10.1016/j.cortex.2022.07.001 [53] Shah-Basak P, Sivaratnam G, Teti S, et al. Electrophy-siological connectivity markers of preserved language functions in post-stroke aphasia[J]. Neuroimage Clin, 2022, 34: 103036. doi:10.1016/j.nicl.2022.103036 [54] Sarmukadam K, Behroozmand R. Neural oscillations reveal disrupted functional connectivity associated with impaired speech auditory feedback control in post-stroke aphasia[J]. Cortex, 2023, 166: 258-274. doi:10.1016/j.cortex.2023.05.015 [55] Wang Y, Yin J, Desai RH. Topological inference on brain networks across subtypes of post-stroke aphasia[J]. ArXiv, 2023: 2311.01625v1 [56] John AA, Javali M, Mahale R, et al. Clinical impression and Western Aphasia Battery classification of aphasia in acute ischemic stroke: is there a discrepancy?[J]. J Neurosci Rural Pract, 2017, 8(1): 74-78. [57] Yang M, Li J, Li ZQ, et al. Whole-brain functional connectome-based multivariate classification of post-stroke aphasia[J]. Neurocomputing, 2017, 269: 199-205. doi:10.1016/j.neucom.2016.10.094 [58] Landrigan JF, Zhang FQ, Mirman D. A data-driven approach to post-stroke aphasia classification and lesion-based prediction[J]. Brain, 2021, 144(5): 1372-1383. [59] Zhao Y, Cox CR, Lambon Ralph MA, et al. Using in vivo functional and structural connectivity to predict chronic stroke aphasia deficits[J]. Brain, 2023, 146(5): 1950-1962. [60] Zhu HZ, Fitzhugh MC, Keator LM, et al. How can graph theory inform the dual-stream model of speech processing? a resting-state fMRI study of post-stroke aphasia[J]. bioRxiv, 2023: 2023.04.17.537216. doi:10.1101/2023.04.17.537216 [61] Mandelli ML, Vilaplana E, Brown JA, et al. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia[J]. Brain, 2016, 139(10): 2778-2791. [62] Kawano T, Hattori N, Uno Y, et al. Association between aphasia severity and brain network alterations after stroke assessed using the electroencephalographic phase synchrony index[J]. Sci Rep, 2021, 11(1): 12469. doi:10.1038/s41598-021-91978-7 [63] Katsumi Y, Quimby M, Hochberg D, et al. Association of regional cortical network atrophy with progression to dementia in patients with primary progressive aphasia[J]. Neurology, 2023, 100(3): 286-296. [64] Thiel A, Zumbansen A. The pathophysiology of post-stroke aphasia: a network approach[J]. Restor Neurol Neurosci, 2016, 34(4): 507-518. [65] Baliki MN, Babbitt EM, Cherney LR. Brain network topology influences response to intensive comprehensive aphasia treatment[J]. NeuroRehabilitation, 2018, 43(1): 63-76. [66] Abel S, Weiller C, Huber W, et al. Therapy-induced brain reorganization patterns in aphasia[J]. Brain, 2015, 138( 4): 1097-1112. [67] Johnson JP, Meier EL, Pan Y, et al. Pre-treatment graph measures of a functional semantic network are associated with Naming therapy outcomes in chronic aphasia[J]. Brain Lang, 2020, 207: 104809. doi:10.1016/j.bandl.2020.104809 [68] Katsuno Y, Ueki Y, Ito K, et al. Effects of a new speech support application on intensive speech therapy and changes in functional brain connectivity in patients with post-stroke aphasia[J]. Front Hum Neurosci, 2022, 16: 870733. doi:10.3389/fnhum.2022.870733 [69] Dreyer FR, Doppelbauer L, Büscher V, et al. Increased recruitment of domain-general neural networks in language processing following intensive language-action therapy: fMRI evidence from people with chronic aphasia[J]. Am J Speech Lang Pathol, 2021, 30(1): 455-465. [70] Song SE, Krishnamurthy LC, Rodriguez AD, et al. Methodologies for task-fMRI based prognostic biomar-kers in response to aphasia treatment[J]. Behav Brain Res, 2023, 452: 114575. doi:10.1016/j.bbr.2023.114575 [71] Susan Duncan E, Small SL. Changes in dynamic resting state network connectivity following aphasia therapy[J]. Brain Imaging Behav, 2018, 12(4): 1141-1149. [72] Song YC, Liu FH, Kang LQ, et al. Effects of transcranial direct current stimulation on graph Naming function and brain connectivity in postinfarction aphasia patients: an fMRI study[J]. Folia Phoniatr Logop, 2024, 76(3): 264-272. [73] Fenner AS, Webster KT, Ficek BN, et al. Written verb Naming improves after tDCS over the left IFG in primary progressive aphasia[J]. Front Psychol, 2019, 10: 1396. doi:10.3389/fpsyg.2019.01396 [74] Xu S, Yang Q, Chen MY, et al. Capturing neuroplastic changes after iTBS in patients with post-stroke aphasia: a pilot fMRI study[J]. Brain Sci, 2021, 11(11): 1451. doi:10.3390/brainsci11111451 [75] Xu MJ, Gao Y, Zhang H, et al. Modulations of static and dynamic functional connectivity among brain networks by electroacupuncture in post-stroke aphasia[J]. Front Neurol, 2022, 13: 956931. doi:10.3389/fneur.2022.956931 [76] Chang WK, Park J, Lee JY, et al. Functional network changes after high-frequency rTMS over the most activated speech-related area combined with speech therapy in chronic stroke with non-fluent aphasia[J]. Front Neurol, 2022, 13: 690048. doi:10.3389/fneur.2022.690048 [77] Tao Y, Ficek B, Wang ZY, et al. Selective functional network changes following tDCS-augmented language treatment in primary progressive aphasia[J]. Front Aging Neurosci, 2021, 13: 681043. doi:10.3389/fnagi.2021.681043 [78] Dattola S, La Foresta F. Effect of rehabilitation on brain functional connectivity in a stroke patient affected by conduction aphasia[J]. Appl Sci, 2022, 12(12): 5991. doi:10.3390/app12125991 |
|
||