Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (11): 117-122.doi: 10.6040/j.issn.1671-7554.0.2024.1330

• Review • Previous Articles    

Research progress of magnetic resonance imaging in autoimmune nodopathies

SHAN Tixiao1,2, DU Weichen3, WANG Qinzhou4, LI Anning1, LI Chunhai1   

  1. 1. Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of CT, Rizhao Hospital of Traditional Chinese Medicine, Rizhao 276800, Shandong, China;
    3. Department of Radiology, The Peoples Hospital of Junan, Linyi 276600, Shandong, China;
    4. Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2025-11-28

Abstract: Autoimmune nodopathies(AN)is a type of autoimmune disease involving autoantibodies, particularly the lgG4 subtype, that act on demyelinating pathological changes on the node of Ranvier. These changes produce a series of clinical manifestations of peripheral neuropathy, collectively referred to as nodo-paranodopathy. Currently, research on AN primarily focuses on their clinical, pathological, and immunological characteristics. Diagnosis mainly depends on invasive examinations, such as antibody detection and cerebrospinal fluid analysis. Magnetic resonance imaging(MRI)of the peripheral nerves has been increasingly used as a noninvasive method to evaluate peripheral nerve diseases. Focusing on the morphological and quantitative changes of different peripheral nerve diseases continuously can help us better understand the potential pathophysiological processes of these diseases, providing theoretical support for their diagnosis and treatment evaluation. Thus, this article reviews the application of lumbosacral plexus magnetic resonance imaging in AN to provide supporting evidence for early clinical diagnosis, differential diagnosis, and the development of accurate treatment plans.

Key words: Magnetic resonance neurography, Autoimmune nodopathies, Chronic inflammatory demyelinating polyradiculoneuropathy, Guillain-Barre Syndrome, Antibodies

CLC Number: 

  • R445.2
[1] Van den Bergh PYK, van Doorn PA, Hadden RDM, et al. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint Task Force-Second revision[J]. J Peripher Nerv Syst, 2021, 26(3): 242-268.
[2] Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of paraproteinemic demyelinating neuropathies. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society: first revision[J]. J Peripher Nerv Syst, 2010, 15(3): 185-195.
[3] Appeltshauser L, Brunder AM, Heinius A, et al. Antiparanodal antibodies and IgG subclasses in acute autoimmune neuropathy[J]. Neurol Neuroimmunol Neuroinflamm, 2020, 7(5): e817. doi: 10.1212/NXI.0000000000000817
[4] Doppler K, Appeltshauser L, Wilhelmi K, et al. Destruction of paranodal architecture in inflammatory neuropathy with anti-contactin-1 autoantibodies[J]. J Neurol Neurosurg Psychiatry, 2015, 86(7): 720-728.
[5] Vallat JM, Yuki N, Sekiguchi K, et al. Paranodal lesions in chronic inflammatory demyelinating polyneuropathy associated with anti-Neurofascin 155 antibodies[J]. Neuromuscul Disord, 2017, 27(3): 290-293.
[6] Koike H, Nishi R, Ikeda S, et al. Ultrastructural mechanisms of macrophage-induced demyelination in CIDP[J]. Neurology, 2018, 91(23): 1051-1060.
[7] Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy[J]. Ann Neurol, 2013, 73(3): 370-380.
[8] Querol L, Rojas-García R, Diaz-Manera J, et al. Rituximab in treatment-resistant CIDP with antibodies against paranodal proteins[J]. Neurol Neuroimmunol Neuroinflamm, 2015, 2(5): e149. doi: 10.1212/NXI.0000000000000149
[9] Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg[J]. Neurology, 2014, 82(10): 879-886.
[10] Doppler K, Appeltshauser L, Villmann C, et al. Auto-antibodies to contactin-associated protein 1(Caspr)in two patients with painful inflammatory neuropathy[J]. Brain, 2016, 139(10): 2617-2630.
[11] Pascual-Goñi E, Fehmi J, Lleixà C, et al. Antibodies to the Caspr1/contactin-1 complex in chronic inflammatory demyelinating polyradiculoneuropathy[J]. Brain, 2021, 144(4): 1183-1196.
[12] Delmont E, Manso C, Querol L, et al. Autoantibodies to nodal isoforms of neurofascin in chronic inflammatory demyelinating polyneuropathy[J]. Brain, 2017, 140(7): 1851-1858.
[13] Stengel H, Vural A, Brunder AM, et al. Anti-pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy[J]. Neurol Neuroimmunol Neuroinflamm, 2019, 6(5): e603. doi: 10.1212/NXI.0000000000000603
[14] Fehmi J, Davies AJ, Walters J, et al. IgG1 pan-neurofascin antibodies identify a severe yet treatable neuropathy with a high mortality[J]. J Neurol Neurosurg Psychiatry, 2021, 92(10): 1089-1095.
[15] Koike H, Kadoya M, Kaida KI, et al. Paranodal dissection in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin-155 and anti-contactin-1 antibodies[J]. J Neurol Neurosurg Psychiatry, 2017, 88(6): 465-473.
[16] Cortese A, Lombardi R, Briani C, et al. Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: Clinical relevance of IgG isotype[J]. Neurol Neuroimmunol Neuroinflamm, 2019, 7(1): e639. doi: 10.1212/NXI.0000000000000639
[17] Vallat JM, Magy L, Corcia P, et al. Ultrastructural lesions of nodo-paranodopathies in peripheral neuropathies[J]. J Neuropathol Exp Neurol, 2020, 79(3): 247-255.
[18] Vallat JM, Mathis S, Magy L, et al. Subacute nodopathy with conduction blocks and anti-neurofascin 140/186 antibodies: an ultrastructural study[J]. Brain, 2018, 141(7): e56. doi: 10.1093/brain/awy134
[19] 中华医学会神经病学分会, 中华医学会神经病学分会周围神经病协作组. 自身免疫性郎飞结病诊断和治疗中国专家共识2023 [J]. 中华神经科杂志, 2024(5): 437-442.
[20] Miura Y, Devaux JJ, Fukami Y, et al. Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory Ataxia[J]. Brain, 2015, 138(6): 1484-1491.
[21] Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg[J]. Neurology, 2014, 82(10): 879-886. doi: 10.1212/WNL.0000000000000205
[22] Devaux JJ, Miura Y, Fukami Y, et al. Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuro-pathy[J]. Neurology, 2016, 86(9): 800-807.
[23] Ogata H, Yamasaki R, Hiwatashi A, et al. Characterization of IgG4 anti-neurofascin 155 antibody-positive polyneuropathy[J]. Ann Clin Transl Neurol, 2015, 2(10): 960-971.
[24] Filler AG, Kliot M, Winn HR, et al. Magnetic resonance neurography[J]. Lancet, 1993, 341(8846): 659-661.
[25] 吴菲, 王卫卫, 刘含秋. 慢性炎性脱髓鞘性多发性神经根神经病的MRI研究进展[J]. 国际医学放射学杂志, 2019, 42(5): 543-546. WU Fei, WANG Weiwei, LIU Hanqiu. The research progress of MRI in chronic inflammatory demyelinating polyradiculoneuropathy[J]. International Journal of Medical Radiology, 2019, 42(5): 543-546.
[26] 马妍, 鲁明, 樊东升. 抗NF155 IgG4抗体阳性慢性炎性脱髓鞘性多发性神经根神经病一例并文献复习[J]. 中国神经免疫学和神经病学杂志, 2017, 24(3): 188-192. MA Yan, LU Ming, FAN Dongsheng. The features of an anti-NF155 IgG4 antibodies positive chronic inflammatory demyelinating polyradiculoneuropathy patient and a literature review[J]. Chinese Journal of Neuroimmunology and Neurology, 2017, 24(3): 188-192.
[27] 卢茜, 朱敏, 洪道俊. 青年男性肢体震颤伴踮脚无力1年——NF155 IgG4抗体阳性慢性炎性脱髓鞘性多发性神经根神经病 [J]. 中国神经精神疾病杂志, 2020, 46(4): 248-251.
[28] Kuwahara M, Suzuki H, Oka N, et al. ELectron microscopic abnormality and therapeutic efficacy in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin155 immunoglobulin G4 antibody[J]. Muscle Nerve, 2018, 57(3): 498-502.
[29] Kira JI, Yamasaki R, Ogata H. Anti-neurofascin autoantibody and demyelination[J]. Neurochem Int, 2019, 130: 104360. doi: 10.1016/j.neuint.2018.12.011
[30] Franques J, Chapon F, Devaux J, et al. Teaching Neuro Images: cranial nerve hypertrophy in IgG4 anti-neurofascin 155 antibody-positive polyneuropathy[J]. Neurology, 2017, 88(7): 52. doi: 10.1212/WNL.0000000000003616
[31] Ogata H, Zhang X, Inamizu S, et al. Optic, trigeminal, and facial neuropathy related to anti-neurofascin 155 antibody[J]. Ann Clin Transl Neurol, 2020, 7(11): 2297-2309.
[32] Wang WY, Liu LC, Zhang MZ, et al. Case report: autoimmune nodopathy with concurrent serum and CSF IgG4 anti-neurofascin 155 antibodies[J]. Front Immunol, 2022, 13: 1028282. doi: 10.3389/fimmu.2022.1028282
[33] 陈海, 卢岩, 邸丽, 等. 抗神经束蛋白155抗体阳性的结旁病临床异质性研究 [J]. 中国现代神经疾病杂志, 2022, 22(4): 291-299.
[34] 刘炳佑, 孙翀, 陈讷, 等. 抗神经束蛋白155抗体阳性慢性炎性脱髓鞘性多发性神经根神经病的臂丛神经影像学特点研究 [J]. 中国临床神经科学, 2021, 29(1): 22-27.
[35] Hiwatashi A, Togao O, Yamashita K, et al. Evaluation of chronic inflammatory demyelinating polyneuropathy: 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging(3D SHINKEI)[J]. Eur Radiol, 2017, 27(2): 447-453.
[36] Wang WQ, Liu C, Li W, et al. Clinical and diagnostic features of anti-neurofascin-155 antibody-positive neuropathy in Han Chinese[J]. Ann Clin Transl Neurol, 2022, 9(5): 695-706.
[37] Lu YC, Wang YJ, Hu JN, et al. Semiquantitative assessment of preganglionic nerves for chronic immune-mediated neuropathies using brachial plexus magnetic resonance imaging[J]. Quant Imaging Med Surg, 2024, 14(4): 2968-2977.
[38] Wang WQ, Liu C, Li W, et al. Clinical and diagnostic features of anti-neurofascin-155 antibody-positive neuropathy in Han Chinese[J]. Ann Clin Transl Neurol, 2022, 9(5): 695-706.
[39] Kronlage M, Pitarokoili K, Schwarz D, et al. Diffusion tensor imaging in chronic inflammatory demyelinating polyneuropathy: diagnostic accuracy and correlation with electrophysiology[J]. Invest Radiol, 2017, 52(11): 701-707.
[40] Jeon T, Fung MM, Koch KM, et al. Peripheral nerve diffusion tensor imaging: overview, pitfalls, and future directions[J]. J Magn Reson Imaging, 2018, 47(5): 1171-1189.
[41] 吴菲, 王卫卫, 李冲, 等. T2 mapping在周围神经疾病中的研究进展[J]. 中国医学计算机成像杂志, 2020, 26(1): 97-100. WU Fei, WANG Weiwei, LI Chong, et al. The research progress of T2 mapping in peripheral nerve disorders[J]. Chinese Computed Medical Imaging, 2020, 26(1): 97-100.
[42] 吴文骏, 周红艳, 秦子及, 等. 免疫介导周围神经病的磁共振神经成像(MRN)特征研究 [J]. 临床放射学杂志, 2020, 39(10): 1941-1946.
[43] Feuerriegel GC, Marth AA, Germann C, et al. 7 T MRI of the cervical neuroforamen: assessment of nerve root compression and dorsal root Ganglia in patients with radiculopathy[J]. Invest Radiol, 2024, 59(6): 450-457.
[44] Yoon D, Biswal S, Rutt B, et al. Feasibility of 7T MRI for imaging fascicular structures of peripheral nerves[J]. Muscle Nerve, 2018, 57(3): 494-498.
[45] Sveinsson B, Rowe OE, Stockmann JP, et al. Feasibility of simultaneous high-resolution anatomical and quantitative magnetic resonance imaging of sciatic nerves in patients with Charcot-Marie-Tooth type 1A(CMT1A)at 7T[J]. Muscle Nerve, 2022, 66(2): 206-211.
[46] Hashiba J, Yokota H, Abe K, et al. Ultrasound-based radiomic analysis of the peripheral nerves for differentiation between CIDP and POEMS syndrome[J]. Acta Radiol, 2023, 64(9): 2627-2635.
[1] ZHAO Hanqing, ZHOU Xinrui, LI Zijian, TANG Xing. Application of circulating tumor cells combined with serological detection in non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 79-85.
[2] YANG Weifang, XU Hong, LIU Yuantao, ZHAO Huichen. Mechanism of thyroid-stimulating immunoglobulin in Graves disease recurrence and clinical significance [J]. Journal of Shandong University (Health Sciences), 2025, 63(4): 116-121.
[3] ZHAO Yongheng, GAO Liang, LI Baomin. Two cases of anti-Ma2 antibody positive encephalitis in children and literature review [J]. Journal of Shandong University (Health Sciences), 2021, 59(5): 96-103.
[4] ZHENG Jin, ZHANG Jiangwei, WANG Xuzhen, KUANG Peidan, HE Xiaoli, XUE Wujun. Significance of lymphocytes and DSA monitoring for acute rejection diagnosis on the early stage of kidney transplantation [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(7): 89-94.
[5] SUN Hao, WANG Chunjuan, WANG Ge, WANG Baojie, GUO Shougang. Neuromyelitis optica spectrum disorders with common non-organ-specific autoantibodies [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(10): 50-54.
[6] WANG Fuying1, LIU Xiaomeng2, DONG Qingyu2, LIANG Cuige2, DU Wenhua2, WANG Yueli2, LI Wenxia2, GAO Guanqi2. Dynamic changes of serum TRAb concentration after 131I treatment of Graves’ disease and its association with early hypothyroidism [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(6): 55-57.
[7] MA Ming-ze, ZHANG An-zhong,KUAI Jing-hua,YANG Chong-mei. Detection of serum food allergen-specific IgG and impact of allergic food  elimination on the treatment of ulcerative colitis patients [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(1): 86-89.
[8] WANG Yan1, DOU Heng-li2, HU Cheng-jin1. Construction and expression of a prokaryotic vector encoding outer membrane protein OprF of Pseudomonas aeruginosa [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(9): 34-39.
[9] . Impact of posttransplant development of HLA antibodies and MICA antibodies on renal allograft function [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(12): 74-77.
[10] GONG Xing-jun,ZHANG Gong,PANG Xin-yan,LI Shou-xian,GU Xing-hua. Quantitative analysis of calcium content in aortic valved homograft tissues in rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(9): 842-846.
[11] LI Yue-hua,SONG hui-min,PANG Ting-yan,GONG Xing-jun. [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2006, 44(9): 875-877.
[12] FENG Rong-jie,XIE Fei-bin,QIAN Jian-rong,ZHANG Shuai,TANG Ji-wen,LI Jian-min. Immunological activity of bispecific single chain [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2006, 44(9): 900-904.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!