Journal of Shandong University (Health Sciences) ›› 2024, Vol. 62 ›› Issue (6): 82-90.doi: 10.6040/j.issn.1671-7554.0.2024.0064

• Clinical Medicine • Previous Articles    

Two family reports and literature review of autosomal dominant osteopetrosis type II

ZHANG Di, NIE Chenyu, LIU Jidong, HOU Xinguo, CHEN Li   

  1. Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2024-07-15

Abstract: Objective To analyze the clinical features of two patients with autosomal dominant osteopetrosis(ADO), and to explore the mutations in the causative genes in the probands and their family lines. Methods The clinical characteristics and laboratory examination data of the two ADO cases were collected and analyzed, and relevant literature was reviewed to summarize the diagnosis and treatment of the disease. Results Genetic testing revealed a new missense mutation in exon 24 of the chloride channel protein 7(CLCN7)gene, p.Gly765Cys, in proband 1, and a known missense mutation, p.Arg286Trp, in exon 10 of the CLCN7 gene in proband 2. Both probands manifested abnormally high bone mass and "sandwich" vertebral body changes, but both had normal blood calcium, phosphorus and alkaline phosphatase levels and elevated lactate dehydrogenase and creatine kinase levels. Conclusion Patients with ADO mainly exhibit abnormally high bone density, increased bone fragility and susceptibility to fracture. Currently, the disease is mostly treated symptomatically. In severe cases, anemia, thrombocytopenia with hemorrhage, frequent infections, and liver and spleen enlargement may occur. Further literature review will better summarize the clinical presentation, diagnosis and therapeutic features of ADO.

Key words: Autosomal dominant osteopetrosis, Chloride channel protein 7, Missense mutation, Fracture, Bone mineral density

CLC Number: 

  • R681
[1] Wang C, Zhang H, He JW, et al. The virulence gene and clinical phenotypes of osteopetrosis in the Chinese population: six novel mutations of the CLCN7 gene in twelve osteopetrosis families[J]. J Bone Miner Metab, 2012, 30(3): 338-348.
[2] 蒋洁, 徐潮, 赵家军. 骨硬化症的诊疗现状[J]. 国际内分泌代谢杂志, 2023, 43(4): 301-304. JIANG Jie, XU Chao, ZHAO Jiajun. Diagnosis and treatment of osteosclerosis[J]. International Journal of Endocrinology and Metabolism, 2023, 43(4): 301-304.
[3] Wu CC, Econs MJ, DiMeglio LA, et al. Diagnosis and management of osteopetrosis: consensus guidelines from the osteopetrosis working group[J]. J Clin Endocrinol Metab, 2017, 102(9): 3111-3123.
[4] Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis[J]. Bone, 2008, 42(1): 19-29.
[5] Bug DS, Barkhatov IM, Gudozhnikova YV, et al. Identification and characterization of a novel CLCN7 variant associated with osteopetrosis[J]. Genes(Basel), 2020, 11(11): E1242.
[6] Cleiren E, Bénichou O, Van Hul E, et al. Albers-Schönberg disease(autosomal dominant osteopetrosis, type II)results from mutations in the ClCN7 chloride channel gene[J]. Hum Mol Genet, 2001, 10(25): 2861-2867.
[7] Li L, Lv SS, Wang C, et al. Novel CLCN7 mutations cause autosomal dominant osteopetrosis type II and intermediate autosomal recessive osteopetrosis[J]. Mol Med Rep, 2019, 19(6): 5030-5038.
[8] Ou M, Li C, Tang D, et al. Genotyping, generation and proteomic profiling of the first human autosomal dominant osteopetrosis type II-specific induced pluripotent stem cells[J]. Stem Cell Res Ther, 2019, 10(1): 251.
[9] Waguespack SG, Hui SL, DiMeglio LA, et al. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation[J]. J Clin Endocrinol Metab, 2007, 92(3): 771-778.
[10] Palagano E, Menale C, Sobacchi C, et al. Genetics of osteopetrosis[J]. Curr Osteoporos Rep, 2018, 16(1): 13-25.
[11] Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis[J]. Bone, 2008, 42(1): 19-29.
[12] Spinnato P, Pedrini E, Petrera MR, et al. Spectrum of skeletal imaging features in osteopetrosis: inheritance pattern and radiological associations[J]. Genes(Basel), 2022, 13(11): 1965.
[13] Bollerslev J, Henriksen K, Nielsen MF, et al. Autosomal dominant osteopetrosis revisited: lessons from recent studies[J]. Eur J Endocrinol, 2013, 169(2): R39-R57.
[14] Coudert AE, de Vernejoul MC, Muraca M, et al. Osteopetrosis and its relevance for the discovery of new functions associated with the skeleton[J]. Int J Endocrinol, 2015, 2015: 372156. doi:10.1155/2015/372156.
[15] Yuan P, Yue ZH, Sun LZ, et al. Novel mutation of TCIRG1 and clinical pictures of two infantile malignant osteopetrosis patients[J]. J Bone Miner Metab, 2011, 29(2): 251-256.
[16] Penna S, Villa A, Capo V. Autosomal recessive osteopetrosis: mechanisms and treatments[J]. Dis Model Mech, 2021, 14(5): dmm048940.
[17] Whyte MP. Carbonic anhydrase II deficiency[J]. Bone, 2023, 169: 116684. doi:10.1016/j.bone.2023.116684.
[18] Wang Z, Li X, Wang Y, et al. Natural history of type II autosomal dominant osteopetrosis: a single center retrospective study[J]. Front Endocrinol(Lausanne), 2022, 13: 819641. doi:10.3389/fendo.2022.819641.
[19] Bollerslev J, Henriksen K, Nielsen MF, et al. Autosomal dominant osteopetrosis revisited: lessons from recent studies[J]. Eur J Endocrinol, 2013, 169(2): R39-R57.
[20] Xue Y, Wang W, Mao T, et al. Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia[J]. J Craniomaxillofac Surg, 2012, 40(5): 416-420.
[21] Piret SE, Gorvin CM, Trinh A, et al. Autosomal dominant osteopetrosis associated with renal tubular acidosis is due to a CLCN7 mutation[J]. Am J Med Genet A, 2016, 170(11): 2988-2992.
[22] Whyte MP, Chines A, Silva DP, et al. Creatine kinase brain isoenzyme(BB-CK)presence in serum distinguishes steopetrosis among the sclerosing bone disorders[J]. J Bone Miner Res, 1996, 11(10): 1438-1443.
[23] Waguespack SG, Hui SL, White KE, et al. Measurement of tartrate-resistant acid phosphatase and the brain isoenzyme of creatine kinase accurately diagnoses type II autosomal dominant osteopetrosis but does not identify gene carriers[J]. J Clin Endocrinol Metab, 2002, 87(5): 2212-2217.
[24] Alatalo SL, Ivaska KK, Waguespack SG, et al. Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in albers-schoönberg disease(type II autosomal dominant osteopetrosis)[J]. Clin Chem, 2004, 50(5): 883-890.
[25] Whyte MP, Kempa LG, McAlister WH, et al. Elevated serum lactate dehydrogenase isoenzymes and aspartate transaminase distinguish Albers-Schönberg disease(Chloride Channel 7 Deficiency Osteopetrosis)among the sclerosing bone disorders[J]. J Bone Miner Res, 2010, 25(11): 2515-2526.
[26] Chu K, Koller DL, Snyder R, et al. Analysis of variation in expression of autosomal dominant osteopetrosis type 2: searching for modifier genes[J]. Bone, 2005, 37(5): 655-661.
[27] Pang Q, Chi Y, Zhao Z, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II(ADO-II)and intermediate autosomal recessive osteopetrosis(IARO)in Chinese patients[J]. Osteoporos Int, 2016, 27(3): 1047-1055.
[28] Bénichou O, Cleiren E, Gram J, et al. Mapping of autosomal dominant osteopetrosis type II(Albers-Schönberg disease)to chromosome 16p13.3[J]. Am J Hum Genet, 2001, 69(3): 647-654.
[29] Kim SY, Lee Y, Kang YE, et al. Genetic analysis of CLCN7 in an old female patient with type II autosomal dominant osteopetrosis[J]. Endocrinol Metab(Seoul), 2018, 33(3): 380-386.
[30] Frattini A, Pangrazio A, Susani L, et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis[J]. J Bone Miner Res, 2003, 18(10): 1740-1747.
[31] Leisle L, Ludwig CF, Wagner FA, et al. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity[J]. EMBO J, 2011, 30(11): 2140-2152.
[32] Alkhayal Z, Shinwari Z, Gaafar A, et al. Carbonic anhydrase II activators in osteopetrosis treatment: a review[J]. Curr Issues Mol Biol, 2023, 45(2): 1373-1386.
[33] Key LL, Ries WL, Rodriguiz RM, et al. Recombinant human interferon gamma therapy for osteopetrosis[J]. J Pediatr, 1992, 121(1): 119-124.
[34] Polgreen LE, Imel EA, Econs MJ. Autosomal dominant osteopetrosis[J]. Bone, 2023, 170: 116723. doi:10.1016/j.bone.2023.116723.
[35] Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment[J]. Bone, 2017, 102: 50-59. doi:10.1016/j.bone.2017.02.002.
[1] ZHANG Minghui, WANG Liyun, WANG Yun, ZHANG Xinyue, SHA Kaihui. A nomogram analysis of the risk of kinesiophobia in patients with hip fracture after surgery [J]. Journal of Shandong University (Health Sciences), 2023, 61(11): 74-81.
[2] LIN Junxin, LIU Yujiang, LIU Peilai, WAN Lianping, ZHANG Peng, DU Jianchun, LIU Zemiao, KONG Jie, GAO Shengtao. Two cases of periprosthetic tibial plateau fracture after fixed-bearing unicompartmental knee arthroplasty [J]. Journal of Shandong University (Health Sciences), 2022, 60(3): 96-99.
[3] TIAN Jiguang, WANG Zhiyong, CHENG Lin, SANG Xiguang. A new method of trajectory screw placement for pelvis and acetabulum [J]. Journal of Shandong University (Health Sciences), 2022, 60(10): 17-26.
[4] DU Jiaojiao, ZHUANG Xianghua, CHEN Shihong, WANG Xuemeng, JIANG Dongqing, WU Fei, HAN Xiaolin, HUA Mengyu, SONG Yuwen. Changes of serum IL-31 and IL-33 levels in postmenopausal patients with osteoporosis [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 45-50.
[5] KANG Chengwei, LIU Lei, PU Xiaobing, TAN Gang, DONG Changchao, YAN Zhaokui. Analysis of bone metabolism and bone turnover markers in 62 cases of osteoporosis with subclinical hypothyroidism [J]. Journal of Shandong University (Health Sciences), 2020, 58(5): 82-86.
[6] LIU Huashui, DUAN Shengjun, ZHAO Guohui, ZHANG Zhen, ZHU Liming, WANG Xueguang, JIA Fengshuang, LIU Shidong, LIU Mincen, LI Ming, CHEN Hua. Robot-assisted minimally invasive treatment of pelvic ring injuries: a clinical analysis of 108 cases [J]. Journal of Shandong University (Health Sciences), 2019, 57(11): 52-59.
[7] LIN Jinxiu, SUN Dongsheng, ZHENG Xiao, FU Kaifeng, LI Ye, YIN Dechao. Efficacy and safety of perioperative intravenous iron sucrose therapy in elderly patients with femoral intertrochanteric fracture [J]. Journal of Shandong University (Health Sciences), 2018, 56(1): 86-89.
[8] LIU Huashui, DUAN Shengjun, JIA Fengshuang, LIU Shidong, CHEN Hua, WANG Yeben, JIA Tanghong, ZHAO Guohui, ZHU Liming, LIU Mincen. TiRobot-assisted percutaneous screw fixation in unstable pelvic ring fractures [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(7): 103-109.
[9] XU Daxia, HOU Nan, LI Xiaofeng, WANG Chuang, KONG Meng, JIAO Guangjun, CHEN Yunzhen. Relevance between bone metabolism of glucocorticoid-induced osteoporosis and duration of glucocorticoid treatment [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(5): 103-107.
[10] LIU Huashui, DUAN Shengjun, LIU Shidong, JIA Tanghong, JIA Fengshuang. Stoppa approach in the treatment of anterior pelvic ring fractures complicated with posterior urethral disruption [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(8): 88-91.
[11] ZHANG Zhenwei, FAN Xiaoyan, ZHANG Yunhua, JIANG Zhongmin. Analgesic effect of continuous thoracic paravertebral block in patients with multiple fractured ribs [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(6): 39-42.
[12] ZHANG Jing, HAO Lanxiang, ZHANG Xiaochen, ZHANG Yonghong, FAN Shanshan, LIU Yan, JIANG Ling. Effects of bisphenol A on the bone mineral densities of vertebrate and femoral bone in rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(3): 36-40.
[13] LIU Tao, BAO Feilong, GAO Wei, KANG Shijie, LÜ Fuxin, HU Yiming. A standard surgical protocol and outcome of treating varus posteromedial rotational instability of elbow [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(12): 41-45.
[14] SUN Xiangyao, HAI Yong, ZHANG Xinuo. Comparison of the adverse events of percutaneous pedicle screw fixation and traditional open pedicle screw fixation for thoracolumbar fractures: a Meta-analysis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(11): 56-63.
[15] LIN Jinxiu, SUN Dongsheng, ZHENG Xiao, YIN Dechao, LI Ye, WANG Kunpeng. Impact of topical use of tranexamic acid on hidden blood loss after femoral intertrochanteric fracture fixation with PFNA [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(1): 67-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!