Journal of Shandong University (Health Sciences) ›› 2019, Vol. 57 ›› Issue (3): 25-30.doi: 10.6040/j.issn.1671-7554.0.2018.877

Previous Articles    

Effects of sevoflurane preconditioning on silent information regulator of transcription 3 expression and acetylation in H9C2 cardiomyocytes after hypoxia/reoxygenation

XIONG Chao, LIU Li, FENG Jianguo, WEI Jicheng   

  1. Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
  • Published:2022-09-27

Abstract: Objective To investigate the effects of sevoflurane preconditioning on silent information regulator of transcription 3(SIRT3)expression and the acetylation of H9C2 cardiomyocytes after hypoxia/reoxygenation. Methods Rat H9C2 cardiomyocytes were randomly divided into control group, hypoxia/reoxygenation group and sevoflurane pretreatment group. Cells without any treatment served as control group. Hypoxia/reoxygenation models were prepared in a hypoxia incubator, in which cells were exposed to 2 h hypoxia followed by 2 h reoxygenation. Cells in the sevoflurane pretreatment group were treated with 2.5% sevoflurane for 1 h before hypoxia/reoxygenation processing. The cell survival 山 东 大 学 学 报 (医 学 版)57卷3期 -熊超,等.七氟醚预处理对H9C2心肌细胞缺氧/复氧后转录沉默信息调节器3的表达及乙酰化水平的影响 \=-was detected with methylthiazolyltetrazolium(MTT)assay. Mitochondrial membrane potential was examined with JC-1 fluorescence probe. The acetylation of proteins, especially that of mitochondrial protein, SIRT3 expression, and mitophagy level were detected with Western blotting. Results Compared with the control group, the hypoxia/reoxygenation group had decreased expression of SIRT3(0.78±0.04 vs 1.04±0.06), increased acetylation level of proteins(1.72±0.06 vs 0.98±0.03)and mitochondrial protein(0.96±0.03 vs 0.45±0.03)(P<0.05), decreased cell survival [(48.2±0.4)% vs 100%], decreased mitochondrial membrane potential(1.72±0.14 vs 2.83±0.11), and increased mitophagy level(P<0.05). Compared with the hypoxia/reoxygenation group, the sevoflurane pretreatment group had increased expression of SIRT3(0.93±0.03 vs 0.78±0.04), decreased acetylation level of proteins(1.34±0.05 vs 1.72±0.06)and mitochondrial protein(0.65±0.04 vs 0.96±0.03)(P<0.05), increased cell survival [(65.80±1.53)% vs (48.20±0.40)%] and mitochondrial membrane potential(2.33±0.12 vs 1.72±0.14), and decreased mitophagy level(P<0.05). Conclusion Sevoflurane pretreatment is capable of elevating the expression of SIRT3 and downregulating the acetylation of H9C2 cells after hypoxia/reoxygenation injury, which might be the molecular mechanism underlying the protective effects of sevoflurane on cardiomyocytes.

Key words: Sevoflurane preconditioning, Acetylization, Silent information regulator of transcription 3, Mitophagy, Hypoxia/reoxygenation

CLC Number: 

  • R197.1
[1] Ikeda Y, Shirakabe A, Brady C, et al. Molecular mechanisms mediating mitochondrial dynamics and Mitophagy and their functional roles in the cardiovascular system [J]. J Mol Cell Cardiol, 2015, 78: 116-122. doi:10.1016/j.yjmcc.2014.09.019.
[2] Yu P, Zhang J, Yu SC, et al. Protective effect of sevoflurane postconditioning against cardiac Ischemia/Reperfusion injury via ameliorating mitochondrial impairment, oxidative stress and rescuing autophagic clearance [J]. PLoS One, 2015, 10(8): e0134666. doi:10.1371/journal.pone.0134666
[3] 邬云斌, 刘新伟, 刘玲. Sirt3在心肌保护方面的研究进展[J]. 临床麻醉学杂志, 2012, 28(10): 1024-1025. WU Yunbin, LIU Xinwei, LIU Ling. Research progress of Sirt3 in myocardial protection [J]. The Journal of Clinical Anesthesiology, 2012, 28(10): 1024-1025.
[4] Pantazi E, Zaouali MA, Bejaoui M, et al. Role of sirtuins in ischemia-reperfusion injury [J]. World J Gastroenterol, 2013, 19(43): 7594-7602.
[5] Trevi(~overn)o-Salda(~overn)a N, Garcí a-Riras G. Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals [J]. Oxid Med Cell Longev, 2017, 2017: 1750306. doi:10.1155/2017/1750306.
[6] Wang ZL, Cui RS, Wang K. Effects of sevoflurane pretreatment on the apoptosis of rat H9c2 cardiomyocytes and the expression of GRP78 [J]. Exp Ther Med, 2018, 15(3): 2818-2823.
[7] 王露, 牛力, 许鹏程. 七氟醚预处理对缺氧/复氧损伤心肌细胞中自噬的影响[J]. 国际麻醉学与复苏杂志, 2015, 36(9): 785-789. WANG Lu, NIU Li, XU Pengcheng. Effects of sevoflurane preconditioning on autophagy during hypoxia/reoxygenation injury in cardiomyocytes [J]. International Journal of Anesthesiology and Resuscitation, 2015, 36(9): 785-789.
[8] Yu J, Wu JJ, Xie P, et al. Sevoflurane postconditioning attenuates cardiomyocyte hypoxia/reoxygenation injury via restoring mitochondrial morphology [J]. Peer J, 2016, 4: e2659. doi:10.7717/peerj.2659.
[9] 吴萌, 吕平, 杨亚丽, 等. 高糖对心肌细胞损害调节新机制:烟酰胺核糖通过Sirt3-p53/PGC-1α改善线粒体自噬及线粒体合成[J]. 心脏杂志, 2018, 30(2): 130-135. WU Meng, LU Ping, YANG Yali, et al. Nicotinamide riboside alleviates high glucose injury in adult mouse cardiomyocytes via the Sirt3-PGC-1α/P53 pathway through mitochondrial synthesis and mitochondrial autopahgy [J]. Chin Heart, 2018, 30(2): 130-135.
[10] Sun W, Liu CX, Chen QH, et al. SIRT3: A new regulator of cardiovascular diseases [J]. Oxid Med Cell Longev, 2018, 2018: 7293861. doi:10.1155/2018/7293861.
[11] Parodi-Rullán RM, Chapa-Dubocq X, Rullán PJ, et al. Corrigendum: high sensitivity of SIRT3 deficienthearts to ischemia-reperfusion is associated with mitochondrial abnormalities[J]. Front Pharmacol, 2017, 8: 439. doi:10.3389/fphar.2017.00439.
[12] Klishadi MS, Zarei F, Hejazian SH, et al. Losartan protects the heart against ischemia reperfusion injury:sirtuin3 involvement [J]. J Pharm Pharm Sci, 2015, 18(1): 112-123.
[13] Porter GA, Urciuoli WR, Brookes PS, et al. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts [J]. Am J Physiol Heart Circ Physiol, 2014, 306(12): 1602-1609.
[14] Zorova LD, Popkov VA, Plotnikov EY, et al. Mitochondrial membrane potential [J]. Anal Biochem, 2018, 552:50-59. doi:10.1016/j.ab.2017.07.009.
[15] Dorn GWnd. Parkin-dependent mitophagy in the heart [J]. J Mol Cell Cardiol, 2016, 95: 42-49. doi:10.1016/j.yjmcc.2015.11.023.
[16] Webster BR, Scott I, Han K, et al. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy [J]. J Cell Sci, 2013, 126(Pt 21): 4843-4849.
[17] 张静, 乔世刚, 殷明, 等. 七氟醚后处理对大鼠心肌缺血再灌注时线粒体自噬的影响[J]. 中华麻醉学杂志, 2015, 35(8): 944-947. ZHANG Jing, QIAO Shigang, YIN Ming, et al. Effects of sevoflurane postconditioning on mitophagy during ischemia-reperfusion in rats[J]. Chinese Journal of Anesthesiology, 2015, 35(8): 944-947.
[18] McWilliams TG, Muqit MM. PINK1 and Parkin: emerging themes in mitochondrial homeostasis [J]. Curr Opin Cell Biol, 2017, 45: 83-91. doi: 10.1016/j.ceb.2017.03.013.
[19] Metlagel Z, Otomo C, Ohashi K, et al. Structural insights into E2-E3 interaction for LC3 lipidation [J]. Autophagy, 2014, 10(3): 522-523.
[20] Wang SJ, Zhao ZJ, Fan YH, et al. Mst1 inhibits Sirt3 expression and contributes to diabetic cardiomyopathy through inhibiting Parkin-dependent Mitophagy [J]. Biochim Biophys Acta Mol Basis Dis, 2018, S0925-S4439(18): 30133-30139. doi:10.1016/j.bbadis.2018.04.009
[21] Li Y, Ma Y, Song LQ, et al. SIRT3 deficiency exacerbates p53/Parkin mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts[J]. Int J Mol Med, 2018, 41(6): 3517-3520.
[1] ZHANG Huayu, YIN Siyuan, LIU Jian, MA Jiaxu, SONG Ru, CAO Guoqi, WANG Yibing. Quantitative proteomic analysis of epidermal stem cells in oxygen-glucose deprivation conditions [J]. Journal of Shandong University (Health Sciences), 2021, 59(4): 17-27.
[2] ZHAO Xuelian, YU Jun, XIE Zhaohong, CAO Yanjun, LIU Zhen, WANG Xiao, XU Linlin, YANG Hui, ZHENG Xiaolei, SHEN Yang, BI Jianzhong. Mechanism of mitophagy in a cell model of Alzheimer's disease [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(10): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!