您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 18-26.doi: 10.6040/j.issn.1671-7554.0.2024.0430

• 基础医学 • 上一篇    

基于上转换纳米粒子多糖探针的构建及其在肿瘤成像中的应用

巩洁1*,于淼2*,李秀勇3,陈颖1,徐倩茹1,李梅娟1,李艺彤1,刘秀美1   

  1. 1.山东大学齐鲁医学院药学院, 山东 济南 250012;2.菏泽医学专科学校药学与检验系, 山东 菏泽 274000;3.烟台海关技术中心, 山东 烟台 264000
  • 发布日期:2025-11-28
  • 通讯作者: 刘秀美. E-mail:liuxium@sdu.edu.cn*共同第一作者
  • 基金资助:
    国家重点研发计划(2020YF1313902);山东省自然科学基金(ZR2022MH238)

Construction of polysaccharide probe based on upconversion nanoparticles and its application in tumor bioimaging

GONG Jie1*, YU Miao2*, LI Xiuyong3, CHEN Ying1, XU Qianru1, LI Meijuan1, LI Yitong1, LIU Xiumei1   

  1. 1. School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Pharmacy and Medical Laboratory Science, Heze Medical College, Heze 274000, Shandong, China;
    3. Technology Center, Yantai Customs, Yantai 264000, Shandong, China
  • Published:2025-11-28

摘要: 目的 构建一种用上转换纳米颗粒(upconversion nanoparticles, UCNPs)与硫酸软骨素(chondroitin sulfate, CS)连接的探针,开发肝细胞癌(hepatocellular carcinoma, HCC)早期诊断的方法。 方法 以己二酸二酰肼(adipic acid hydrazide, ADH)为桥梁,构建UCNPs-CS探针。首先,CS在1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐[1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, EDC]和 N-羟基琥珀酰亚胺(N-hydroxysuccinimide, NHS)的催化下合成CS-ADH,CS具有肿瘤靶向性,可作为探针的靶向基团。然后,由溶剂热法制备NaYF4:Yb,Tm@NaYF4核壳结构的UCNPs,制备的UCNPs的荧光发射带在800 nm左右,可作为荧光报告基团用于体内成像。UCNPs通过聚丙烯酸(polyacrylic acid, PAA)衍生转水后由羧基氨基偶联反应制备UCNPs-CS纳米荧光探针。UCNPs经光谱、核磁、透射电镜等对形貌和光学性质进行表征,并通过MTT实验对探针的细胞毒性进行考察。通过构建肝癌小鼠模型,评价探针体内成像和肿瘤靶向能力,并利用体内成像评估不同抗肿瘤药物的活性。 结果 制备的核壳结构UCNPs形貌均匀,大小均一,尺寸约35 nm,壳层厚度约3~4 nm,在水中分散性好。构建的UCNPs-CS探针具有良好的发光性能(激发波长980 nm,荧光发射波长800 nm)和细胞相容性(在质量浓度高达500 μg/mL时,24 h后的细胞存活率大于60%),具有较强的组织穿透力,可实现动物水平的活体成像。肝癌小鼠体内成像结果表明,构建的UCNPs-CS探针具有较好的肿瘤靶向性,且成像光辐射强度与肿瘤体积呈正相关。 结论 构建的UCNPs-CS探针为HCC早期可视化诊断提供一种新工具,同时也为抗肿瘤药物的活性筛选提供一种新思路。

关键词: 硫酸软骨素, 上转换纳米颗粒, 肝细胞癌, 生物成像, 药物活性筛选

Abstract: Objective To develop a probe for early diagnosis of hepatocellular carcinoma(HCC)by connecting upconversion nanoparticles(UCNPs)with chondroitin sulfate(CS). Methods The UCNPs-CS nanoprobe was constructed using adipic acid hydrazide(ADH)as a bridging agent. First, CS, which exhibits tumor-targeting properties and serves as the targeting moiety of the probe, was functionalized to synthesize CS-ADH under the catalysis of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride(EDC)and N-hydroxysuccinimide(NHS). Subsequently, NaYF4:Yb,Tm@NaYF4 UCNPs with a core-shell structure were prepared via a solvothermal method. The synthesized UCNPs exhibited fluorescence emission bands around 800 nm, making them suitable as fluorescent reporters for in vivo imaging. The UCNPs were rendered water-dispersible through polyacrylic acid(PAA)surface modification and then conjugated with CS-ADH via carboxyl-amine coupling to form the UCNPs-CS nanoprobe. The morphology, optical properties, and chemical composition of the UCNPs were characterized using spectroscopy, nuclear magnetic resonance(NMR), transmission electron microscopy(TEM), and other analytical techniques. The cytotoxicity of the probe was evaluated via MTT assay. To assess the probes in vivo imaging performance and tumor-targeting efficacy, hepatoma-bearing mouse models were established. Furthermore, the activity of different antitumor drugs was evaluated using in vivo imaging. Results The prepared UCNPs with core-shell structures had uniform morphology and size, with a size of about 35 nm and a shell thickness of about 3-4 nm. They had good dispersibility in water. The constructed UCNPs-CS probe had good luminescence performance(excitation wavelength 980 nm, fluorescence emission wavelength 800 nm), cell compatibility(cell survival rate greater than 60% after 24 hours at a concentration of up to 500 μg/mL), strong tissue penetration ability, and could achieve in vivo imaging at the animal level. The imaging results of liver cancer mice showed that the constructed UCNPs-CS probe had good tumor targeting ability, and the imaging radiation intensity was positively correlated with tumor volume. Conclusion The UCNPs-CS probe provides a new tool for early visual diagnosis of HCC, and also provides a new idea for the activity screening of anti-tumor drugs.

Key words: Chondroitin sulfate, Upconversion nanoparticles, Hepatocellular carcinoma, In vivo imaging, Drug activity screening

中图分类号: 

  • R917
[1] Zhao WY, Liu XP. miR-3682 promotes the progression of hepatocellular carcinoma(HCC)via inactivating AMPK signaling by targeting ADRA1A[J]. Ann Hepatol, 2022, 27(Suppl 1): 100570. doi:10.1016/j.aohep.2021.100570
[2] Chen Y, Hou XG, Li DP, et al. Development of a CLDN18.2-targeting immuno-PET probe for non-invasive imaging in gastrointestinal tumors[J]. J Pharm Anal, 2023, 13(4): 367-375.
[3] Duan QJ, Zhao ZY, Zhang YJ, et al. Activatable fluorescent probes for real-time imaging-guided tumor therapy[J]. Adv Drug Deliv Rev, 2023, 196: 114793. doi:10.1016/j.addr.2023.114793
[4] Li CS, Lin Q, Hu FR, et al. Based on lapatinib innovative near-infrared fluorescent probes targeting HER1/HER2 for in vivo tumors imaging[J]. Biosens Bioelectron, 2022, 214: 114503. doi:10.1016/j.bios.2022.114503
[5] Li H, Yue LZ, Huang HW, et al. A NIR emission fluorescence probe for visualizing elevated levels of SO2 in cancer cells and living tumor[J]. J Photochem Photobiol A Chem, 2023, 441: 114684. doi:10.1016/j.jphotochem.2023.114684
[6] Wang Y, Ma T, Dong JQ. Design and synthesis of a new near-infrared and large Stokes shift fluorescence probe for NAD(P)H: quinone oxidoreductase 1 detection in living systems[J]. Dyes Pigm, 2023, 210: 110981. doi:10.1016/j.dyepig.2022.110981
[7] Sivaiah A, Prusty S, Parandhama A. Synthesis and surface modification of ultrasmall monodisperse NaYF4: Yb3+/Tm3+ upconversion nanoparticles[J]. J Indian Chem Soc, 2023, 100(5): 100990. doi:10.1016/j.jics.2023.100990
[8] Jin BR, Du ZG, Ji JC, et al. Regulation of probe density on upconversion nanoparticles enabling high-performance lateral flow assays[J]. Talanta, 2023, 256: 124327. doi:10.1016/j.talanta.2023.124327
[9] Naher HS, Ali Hussein Al-Turaihi B, Mohammed SH, et al. Upconversion nanoparticles(UCNPs): synthesis methods, imaging and cancer therapy[J]. J Drug Deliv Sci Technol, 2023, 80: 104175. doi:10.1016/j.jddst.2023.104175
[10] Song YQ, Chen M, Han L, et al. A novel ADA-coated UCNPs@NB sensing platform combined with nucleic acid amplification for rapid detection of Escherichia coli[J]. Anal Chim Acta, 2023, 1239: 340751. doi:10.1016/j.aca.2022.340751
[11] Chen GB, Li YH, Liu JL, et al. Anti-stokes luminescent organic nanoparticles for frequency upconversion biomedical imaging[J]. Nanomed Nanotechnol Biol Med, 2023, 50: 102668. doi:10.1016/j.nano.2023.102668
[12] Güleryüz B, U gur Ü, Gülsoy M. Near infrared light activated upconversion nanoparticles(UCNP)based photodynamic therapy of prostate cancers: an in vitro study[J]. Photodiagn Photodyn Ther, 2021, 36: 102616. doi:10.1016/j.pdpdt.2021.102616
[13] Liu B, Ge YH, Lu YH, et al. An NIR light-responsive “on-off-on” photoelectrochemical aptasensor for carcinoembryonic antigen assay based on Y-shaped DNA[J]. Biosens Bioelectron, 2023, 229: 115241. doi:10.1016/j.bios.2023.115241
[14] Zhang Y, Luo D, Zhang Y, et al. DNAzymes-conjugated upconversion nanoamplicon for in situ ultrasensitive detection and imaging of microRNA in vivo[J]. Chem Eng J, 2023, 454: 140489. doi:10.1016/j.cej.2022.140489
[15] Lee HS, Kang NW, Kim H, et al. Chondroitin sulfate-hybridized zein nanoparticles for tumor-targeted delivery of docetaxel[J]. Carbohydr Polym, 2021, 253: 117187. doi:10.1016/j.carbpol.2020.117187
[16] Moto M, Takamizawa N, Shibuya T, et al. Anti-diabetic effects of chondroitin sulfate on normal and type 2 diabetic mice[J]. J Funct Foods, 2018, 40: 336-340. doi:10.1016/j.jff.2017.11.019
[17] Zhu QY, Lin LZ, Zhao MM. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: new prospects for sea cucumber polysaccharide based-hypoglycemic functional food[J]. Int J Biol Macromol, 2020, 159: 34-45. doi:10.1016/j.ijbiomac.2020.05.043
[18] Guo JY, Chiu CH, Wang MJ, et al. Proteoglycan serglycin promotes non-small cell lung cancer cell migration through the interaction of its glycosaminoglycans with CD44[J]. J Biomed Sci, 2020, 27(1): 2. doi:10.1186/s12929-019-0600-3
[19] Nisha R, Kumar P, Kumar U, et al. Assessment of hyaluronic acid-modified imatinib mesylate cubosomes through CD44 targeted drug delivery in NDEA-induced hepatic carcinoma[J]. Int J Pharm, 2022, 622: 121848. doi:10.1016/j.ijpharm.2022.121848
[20] Pan HC, Xue WK, Zhao WJ, et al. Expression and function of chondroitin 4-sulfate and chondroitin 6-sulfate in human glioma[J]. FASEB J, 2020, 34(2): 2853-2868.
[21] Rani A, Baruah R, Goyal A. Prebiotic chondroitin sulfate disaccharide isolated from chicken keel bone exhibiting anticancer potential against human colon cancer cells[J]. Nutr Cancer, 2019, 71(5): 825-839.
[22] Wang Q, Li SY, Xu C, et al. A novel lonidamine derivative targeting mitochondria to eliminate cancer stem cells by blocking glutamine metabolism[J]. Pharmacol Res, 2023, 190: 106740. doi:10.1016/j.phrs.2023.106740
[23] Xia P, Liu DH. Cancer stem cell markers for liver cancer and pancreatic cancer[J]. Stem Cell Res, 2022, 60: 102701. doi:10.1016/j.scr.2022.102701
[24] Zarbska I, Gzil A, Dur slewicz J, et al. The clinical, prognostic and therapeutic significance of liver cancer stem cells and their markers[J]. Clin Res Hepatol Gastroenterol, 2021, 45(3): 101664. doi:10.1016/j.clinre.2021.101664
[25] Luo KP, Xu F, Yao TY, et al. TPGS and chondroitin sulfate dual-modified lipid-albumin nanosystem for targeted delivery of chemotherapeutic agent against multidrug-resistant cancer[J]. Int J Biol Macromol, 2021, 183: 1270-1282. doi:10.1016/j.ijbiomac.2021.05.070
[26] Moghadam NA, Bagheri F, Eslaminejad MB. Chondroitin sulfate modified chitosan nanoparticles as an efficient and targeted gene delivery vehicle to chondrocytes[J]. Colloids Surf B Biointerfaces, 2022, 219: 112786. doi:10.1016/j.colsurfb.2022.112786
[27] Tan TT, Yang Q, Chen D, et al. Chondroitin sulfate-mediated albumin Corona nanoparticles for the treatment of breast cancer[J]. Asian J Pharm Sci, 2021, 16(4): 508-518.
[28] Zhang SF, Hu WB, Yan X, et al. Chondroitin sulfate-curcumin micelle with good stability and reduction sensitivity for anti-cancer drug carrier[J]. Mater Lett, 2021, 304: 130667. doi:10.1016/j.matlet.2021.130667
[1] 陈映均,刘同刚. 综合生物信息学分析鉴定乙型肝炎病毒相关肝细胞癌中异常甲基化修饰的差异表达基因[J]. 山东大学学报 (医学版), 2023, 61(9): 101-117.
[2] 常晴,刘佳,曲爱林,杨咏梅. 利用数据库信息分析NAMPT与肝癌的病理特征和免疫浸润的关联性[J]. 山东大学学报 (医学版), 2023, 61(4): 26-36.
[3] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[4] 王伟,曹煜姗,孙达权,黄小琼,徐国强. 人TIMP-2蛋白在肝癌细胞迁移与侵袭中的作用[J]. 山东大学学报(医学版), 2016, 54(7): 11-17.
[5] 王小林, 王虎, 何发清, 郭兵文. 肝细胞癌经导管肝动脉化疗栓塞术治疗后 CT检查与评价[J]. 山东大学学报(医学版), 2014, 52(S2): 74-75.
[6] 郭卫华, 赵素红, 庞国栋, 邵广瑞. 磁共振弥散加权成像评估肝细胞癌组织学分级的价值[J]. 山东大学学报(医学版), 2014, 52(12): 89-93.
[7] 范海燕,张慧景,郭占军,李胜棉. 肝细胞癌患者癌组织中RASSF1A和WIF-1基因甲基化的临床意义[J]. 山东大学学报(医学版), 2013, 51(5): 89-93.
[8] 孟海鹏,牛卫博,吴小鹏,郭森,刘毅,陈雨信. 门静脉癌栓分型对肝癌手术远期预后的影响[J]. 山东大学学报(医学版), 2013, 51(12): 61-66.
[9] 相玉芬1,王文奇2,田虎3,王义国2,闫明先2,刘长虹2,李双玲2. 肝细胞性肝癌组织中EGF、c-myc的表达及临床意义[J]. 山东大学学报(医学版), 2011, 49(5): 107-110.
[10] 赵伟. 电针对脊髓损伤后硫酸软骨素蛋白多糖表达的影响[J]. 山东大学学报(医学版), 2011, 49(3): 73-.
[11] 赵伟. 电针对脊髓损伤后硫酸软骨素蛋白多糖表达的影响[J]. 山东大学学报(医学版), 2011, 49(3): 73-.
[12] 王勇,张娇,任万华,李涛. MTA1、nm23、c-myc在肝癌组织中的表达及其相关性[J]. 山东大学学报(医学版), 2011, 49(1): 99-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!