您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (8): 94-102.doi: 10.6040/j.issn.1671-7554.0.2024.1217

• 临床研究 • 上一篇    

基于贝叶斯网络的2型糖尿病患者并发脑卒中风险预测

陈莹莹1,2,3,王鲁4,胡锡峰2,朱高培1,2,3,薛付忠1,2,3   

  1. 1.山东大学齐鲁医学院公共卫生学院医学数据学系, 山东 济南 250012;2.国家健康医疗大数据研究院, 山东 济南 250003;3.山东大学齐鲁医院, 山东 济南 250012;4.山东健康医疗大数据管理中心, 山东 济南 250002
  • 发布日期:2025-08-25
  • 通讯作者: 薛付忠. E-mail:xuefzh@sdu.edu.cn朱高培. E-mail:zhugaopei717@163.com
  • 基金资助:
    国家自然科学基金(82173625,82330108);山东省重点研发计划(2021SFGC0504)

A Bayesian network-based risk prediction study of stroke in patients with type 2 diabetes mellitus

CHEN Yingying1,2,3, WANG Lu4, HU Xifeng2, ZHU Gaopei1,2,3, XUE Fuzhong1,2,3   

  1. 1. Department of Medical Dataology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. National Institute of Health and Medical Big Data, Jinan 250003, Shandong, China;
    3. Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    4. National Administration of Health Data, Jinan 250002, Shandong, China
  • Published:2025-08-25

摘要: 目的 构建简便、经济且适用于临床场景的2型糖尿病(type 2 diabetes mellitus,T2DM)并发脑卒中的预测模型,精确预测糖尿病并发脑卒中的发病风险及相关危险因素。 方法 基于齐鲁全生命周期电子健康研究型数据库(Cheeloo Lifespan Electronic Health Research Data-library, CHeeloo LEAD)数据,采用单因素Cox回归分析筛选与糖尿病并发脑卒中相关的危险因素,应用联合Cox与贝叶斯网络模型构建风险预测模型,并从鉴别和校准两方面评价模型的预测性能。 结果 本研究共纳入CHeeloo LEAD中2015年1月1日至2017年10月31日的糖尿病患者15 528例,随防至2023年1月1日,期间发生脑卒中2 552例,单因素分析筛选出67个与脑卒中发病有关的潜在危险因素并用以构建贝叶斯网络,多因素Cox回归模型筛选出个4独立危险因素,分别为年龄、短暂和突发性疾病、循环系统疾病、脑血管病后遗症。联合Cox与贝叶斯网络模型构建T2DM并发脑卒中的预测模型,预测个体3年发生脑卒中的风险,训练集AUC为0.814,测试集AUC为0.816,结果基本一致。 结论 T2DM患者中,年龄、短暂和突发性疾病、循环系统疾病、脑血管病后遗症是导致脑卒中风险增加的重要危险因素。在临床实践中,应重视T2DM患者脑部病变的发生,识别相关的危险因素,加强监测和管理,以减少脑卒中的发生率并改善患者的预后。

关键词: 2型糖尿病, 脑卒中, 贝叶斯网络, Cox回归模型, 风险预测

Abstract: Objective To construct a simple, economical and clinically applicable prediction model for T2DM complicated stroke, so as to accurately predict the risk of diabetes mellitus and stroke and obtain relevant risk factors. Methods Based on the data of Cheeloo Lifespan Electronic Health Research Data-library(CHeeloo LEAD), univariate Cox regression analysis was used to screen the risk factors associated with diabetes mellitus complicated with stroke, and the combined Cox and Bayesian network models were used to construct a risk prediction model, then the prediction performance of the model was evaluated from two aspects of identification and calibration. Results A total of 15,528 diabetic patients in CHeeloo LEAD database from January 1, 2015 to October 31, 2017 were included in this study, and 2,552 cases of stroke occurred from January 1, 2015 to January 1, 2023. Sixty-seven potential risk factors related to stroke were screened out by univariate analysis and used to construct Bayesian networks, and 4 independent risk factors, including age, transient and sudden-onset diseases, circulatory system diseases, and sequelae of cerebrovascular diseases, were screened by multivariate Cox regression model. Combined with the Cox model and Bayesian network model, the prediction model of T2DM complicated stroke was constructed to predict the risk of stroke in individuals in 3 years, and the AUC of the training set and test set were 0.814 and 0.816, respectively, exhibiting the basically consistent results. Conclusion Age, transient and sudden-onset diseases, circulatory diseases, and sequelae of cerebrovascular diseases are important risk factors for the increased risk of stroke in patients with T2DM. In clinical practice, attention should be paid to the occurrence of brain lesions in patients with T2DM. The identification of relevant risk factors and the strengthening of monitoring and management should be carried out to reduce the incidence of stroke and improve the prognosis of patients.

Key words: Type 2 diabetes mellitus, Stroke, Bayesian networks, Cox regression model, Risk prediction

中图分类号: 

  • R730.1
[1] Bellary S, Kyrou I, Brown JE, et al. Type 2 diabetes mellitus in older adults: clinical considerations and management[J]. Nat Rev Endocrinol, 2021, 17(9): 534-548.
[2] 李建辉, 徐波. 老年人Ⅱ型糖尿病合并脑卒中危险因素分析[J]. 中国实用医药, 2007, 2(16): 61-62. LI Jianhui, XU Bo. Analysis of risk factors of type 2 diabetes mellitus complicated with stroke in the elderly[J]. China Practical Medicine, 2007, 2(16): 61-62.
[3] Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. doi:10.1016/j.diabres.2021.109119
[4] Graham H, White PL. Social determinants and lifestyles: integrating environmental and public health perspectives[J]. Public Health, 2016, 141: 270-278. doi:10.1016/j.puhe.2016.09.019
[5] Kolari c V, Svir cevic V, Bijuk R, et al. Chronic complications of diabetes and quality of life[J]. Acta Clin Croat, 2022, 61(3): 520-527.
[6] 王富军, 王文琦. 《中国老年2型糖尿病防治临床指南(2022年版)》解读[J]. 河北医科大学学报, 2022, 43(12): 1365-1370. WANG Fujun, WANG Wenqi. Interpretation of clinical guidelines for the prevention and treatment of type 2 diabetes in the elderly in China(2022 edition)[J]. Journal of Hebei Medical University, 2022, 43(12): 1365-1370.
[7] 朱婧, 罗彩凤, 倪益益, 等. 2型糖尿病病人并发缺血性脑卒中急性期血糖波动趋势及影响因素分析[J]. 安徽医药, 2019, 23(12): 2395-2399. ZHU Jing, LUO Caifeng, NI Yiyi, et al. Analysis of the tendency of blood glucose fluctuation and its influencing factors in type 2 diabetic patients with acute ischemic stroke [J]. Anhui Medical and Pharmaceutical Journal, 2019, 23(12): 2395-2399.
[8] Zhou ZE, Lindley RI, Rådholm K, et al. Canagliflozin and stroke in type 2 diabetes mellitus[J]. Stroke, 2019, 50(2): 396-404.
[9] 许俊杰, 陆霞, 张林燕, 等. 嘉兴市城南社区2型糖尿病患者并发脑卒中患病状况及影响因素调查分析[J]. 实用预防医学, 2022, 29(11): 1358-1361.
[10] 吴云虹, 林雅明, 符薇薇, 等. 糖尿病患者并发急性缺血性脑卒中的影响因素研究[J]. 实用心脑肺血管病杂志, 2021, 29(5): 59-63. WU Yunhong, LIN Yaming, FU Weiwei, et al. Influencing factors of diabetes patients complicated with acute ischemic stroke[J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease, 2021, 29(5): 59-63.
[11] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)(上)[J].中国实用内科杂志,2021,41(8): 668-695.
[12] Nathanson MH, Andrzejowski J, Dinsmore J, et al. Guidelines for safe transfer of the brain-injured patient: trauma and stroke, 2019: guidelines from the Association of Anaesthetists and the Neuro Anaesthesia and Critical Care Society[J]. Anaesthesia, 2020, 75(2): 234-246.
[13] Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers[J]. Mach Learning, 1997, 29: 131-163. doi: 10.1023/A:1007465528199
[14] Glover F. Artificial intelligence, heuristic frameworks and tabu search[J]. Manage Decis Econ, 1990, 11(5): 365-375.
[15] 陈凯庭, 安艳荣, 董学勤, 等. 新诊断2型糖尿病患者采用短期胰岛素泵强化治疗的效果[J]. 中国老年学杂志, 2021, 41(5): 945-948. CHEN Kaiting, AN Yanrong, DONG Xueqin, et al. Effect of short-term insulin pump intensive treatment on newly diagnosed type 2 diabetes mellitus patients[J]. Chinese Journal of Gerontology, 2021, 41(5): 945-948.
[16] 全会标, 高勇义, 李唐瑛. 老年2型糖尿病合并脑卒中危险因素分析[J]. 中国热带医学, 2012, 12(5): 579-581. QUAN Huibiao, GAO Yongyi, LI Tangying. Risk factors associated with cerebral stroke in seniole type 2 daibetes militus patients[J]. China Tropical Medicine, 2012, 12(5): 579-581.
[17] 张竞文, 陈頔, 赵紫楠, 等. 依达拉奉治疗糖尿病合并急性缺血性脑卒中的有效性和安全性系统评价[J]. 中国药业, 2022, 31(3): 108-114. ZHANG Jingwen, CHEN Di, ZHAO Zinan, et al. Efficacy and safety of edaravone in the treatment of diabetes mellitus complicated with acute ischemic stroke: a systematic review[J]. China Pharmaceuticals, 2022, 31(3): 108-114.
[18] 黄永锋, 罗若佳, 范思铭. 胰岛素泵强化甲巯咪唑治疗2型糖尿病合并甲状腺功能亢进症的疗效及预后分析[J]. 吉林医学, 2021, 42(1): 90-92. HUANG Yongfeng, LUO Ruojia, FAN Siming. Efficacy and prognosis analysis of insulin pump strengthening methimazole in the treatment of type 2 diabetes mellitus complicated with hyperthyroidism[J]. Jilin Medical Journal, 2021, 42(1): 90-92.
[19] 尤艺, 韩迪. 2型糖尿病合并非酒精性脂肪肝与缺血性脑血管病的关系分析[J]. 临床医学进展, 2024, 14(3): 1504-1513. YOU Yi, HAN Di. Analysis of the relationship between type 2 diabetes mellitus with nonalcoholic fatty liver disease and ischemic cerebrovascular disease[J]. Advances in Clinical Medicine, 2024, 14(3): 1504-1513.
[20] 宗铮. T2DM与认知功能的相关危险因素分析[D]. 大连:大连医科大学, 2021.
[21] 周新华, 邱伟, 范改焕. T2DM患者肾脏病变与血脂代谢的相关性[J]. 医药论坛杂志, 2020, 41(11): 88-91. ZHOU Xinhua, QIU Wei, FAN Gaihuan. Correlation between renal lesions and lipid metabolism in patients with T2DM [J]. Journal of Medical Forum, 2020, 41(11): 88-91.
[22] 庞宗然, 苏晓慧, 刘祖涵, 等. 微循环障碍与糖尿病及其并发症关系[J]. 时珍国医国药, 2011, 22(4): 988-989. PANG Zongran, SU Xiaohui, LIU Zuhan, et al. Relationship between microcirculation disturbance and diabetes mellitus and its complication[J]. Lishizhen Medicine and Materia Medica Research, 2011, 22(4): 988-989.
[23] 陈英, 张之福, 陈炜, 等. 高血糖对脑卒中预后的影响分析[J]. 中国医药科学, 2012, 2(21): 70-71. CHEN Ying, ZHANG Zhifu, CHEN Wei, et al. Influence analysis of hyperglycemia and cerebral apoplexy prognosis[J]. China Medicine and Pharmacy, 2012, 2(21): 70-71.
[24] 胡耀凯, 韩雄. 前后循环动脉粥样硬化性脑卒中危险因素的比较[J]. 中国实用医刊, 2014, 41(9): 70-71.
[25] 孔伟. 前循环与后循环缺血性卒中的危险因素比较[D]. 青岛: 青岛大学, 2012.
[26] 朱秋荣, 徐惠庆, 骆田斌, 等. 2型糖尿病患者慢性并发症与脑卒中发病的关系[J]. 预防医学, 2017, 29(4): 351-354. ZHU Qiurong, XU Huiqing, LUO Tianbin, et al. A study on the relationship between chronic complications of type 2 diabetic and stroke incidence[J]. Preventive Medicine, 2017, 29(4): 351-354.
[27] 高尚艳. 血糖波动对急性脑卒合并糖尿病患者神经功能预后影响[J]. 糖尿病新世界, 2018, 21(10): 41-42. GAO Shangyan. Effect of blood glucose fluctuation on that prognosis of neurological function in patient with acute stroke complicated with diabetes mellitus[J]. Diabetes New World, 2018, 21(10): 41-42.
[28] Huang YS, Lee CC, Chang TS, et al. Increased risk of stroke in young head and neck cancer patients treated with radiotherapy or chemotherapy[J]. Oral Oncol, 2011, 47(11): 1092-1097.
[29] Guo YJ, Chang MH, Chen PL, et al. Predictive value of plasma(D)-dimer levels for cancer-related stroke: a 3-year retrospective study[J]. J Stroke Cerebrovasc Dis, 2014, 23(4): e249-54.
[30] Kim JM, Jung KH, Park KH, et al. Clinical manifestation of cancer related stroke: retrospective case-control study[J]. J Neurooncol, 2013, 111(3): 295-301.
[31] Lanterna LA, Galliani S, Zangari R, et al. Thyroid autoantibodies and the clinical presentation of moyamoya disease: a prospective study[J]. J Stroke Cerebrovasc Dis, 2018, 27(5): 1194-1199.
[32] 潘建丹, 林芝, 赵秋, 等. 中老年急性出血性脑卒中并发认知功能障碍调查及相关因素分析[J]. 实用预防医学, 2022, 29(2): 245-248. PAN Jiandan, LIN Zhi, ZHAO Qiu, et al. Investigation on cognitive dysfunction and analysis of its correlative factors in middle-aged and elderly patients with acute hemorrhagic stroke[J]. Practical Preventive Medicine, 2022, 29(2): 245-248.
[33] Bergman M, Buysschaert M, Medina JL, et al. Remission of T2DM requires early diagnosis and substantial weight reduction[J]. Nat Rev Endocrinol, 2022, 18(6): 329-330.
[1] 申路佳,逯天威,巩伟明,赵岩松,王淑康,袁中尚. 代谢风险评分在2型糖尿病人群心血管结局预测中的应用[J]. 山东大学学报 (医学版), 2025, 63(8): 69-78.
[2] 李千,杨帆,薛付忠. 基于多模态数据融合的多癌种风险预测模型[J]. 山东大学学报 (医学版), 2025, 63(8): 79-85.
[3] 王丽云,高天勤,刘雨佳,陈青,陈柳,沙凯辉. 基于机器学习产后压力性尿失禁风险预测模型的构建及验证[J]. 山东大学学报 (医学版), 2025, 63(6): 55-66.
[4] 宋思豪,程传龙,李树芬,席睿,梁珂梦,倪志松,崔峰,李秀君. 大气污染对淄博市缺血性脑卒中患者寿命损失年的短期影响及极端温度事件修饰效应[J]. 山东大学学报 (医学版), 2025, 63(2): 84-94.
[5] 刘淋,王晓楠,杨雅溪,王江腾,李旭,周新丽,管庆波,张栩. 甘油三酯-葡萄糖指数与颅内动脉粥样硬化性狭窄的相关性[J]. 山东大学学报 (医学版), 2024, 62(8): 93-100.
[6] 张伯韬,仉率杰,孙爽爽,袁莹,胡锡峰,贾晓峰,于媛媛,薛付忠. 基于贝叶斯网络的缺血性脑卒中筛查模型构建[J]. 山东大学学报 (医学版), 2024, 62(11): 73-84.
[7] 李晨淑,王瑞华,陆信武. 不同腔内技术治疗非A非B型夹层的神经系统并发症研究进展[J]. 山东大学学报 (医学版), 2024, 62(11): 1-7.
[8] 李金泉,高美芳,闫飞,董明. 136例2型糖尿病患者肌肉痉挛的发生频率及危险因素[J]. 山东大学学报 (医学版), 2023, 61(5): 20-24.
[9] 张天鑫,张婷,黄鑫,韩佳沂,王淑康. 氨基酸与2型糖尿病因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2023, 61(5): 102-107.
[10] 钟璐,薛付忠. 基于贝叶斯网络不确定性推理的肺癌风险预测模型[J]. 山东大学学报 (医学版), 2023, 61(4): 86-94.
[11] 李希,王秉翔,李娜,曹丽娜,李爱华,冠潇,张志勉. 下肢外骨骼机器人康复训练对脑卒中偏瘫患者下肢运动的影响[J]. 山东大学学报 (医学版), 2023, 61(3): 121-126.
[12] 韩梅,孟维静,陶子琨,杨希,徐雅琪,穆华夏,卜伟晓,王素珍,石福艳. 基于G-计算的高血压、抑郁在2型糖尿病与认知功能之间的因果多中介分析[J]. 山东大学学报 (医学版), 2023, 61(10): 101-108.
[13] 房启迪,杨淑霞,齐畅,程传龙,韩闯,刘盈,崔峰,李秀君. 基于镇街尺度的淄博市2019年脑卒中时空分布[J]. 山东大学学报 (医学版), 2022, 60(2): 81-88.
[14] 赵美茹,朱迪,刘淋,管庆波,张栩. 简易胰岛素抵抗指标与698例2型糖尿病患者发生高尿酸血症风险的关联[J]. 山东大学学报 (医学版), 2022, 60(12): 44-51.
[15] 于书卷,王美娟,陈丽,曹英娟,吕晓燕,刘雪燕,林鹏,颜景政. 老年2型糖尿病患者轻度认知功能障碍的影响因素[J]. 山东大学学报 (医学版), 2022, 60(11): 108-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!