您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (7): 44-53.doi: 10.6040/j.issn.1671-7554.0.2025.0618

• 临床医学 • 上一篇    下一篇

儿童三维颅颌面及上气道结构与呼吸暂停低通气指数的相关性

沈薇1,金晨曦1,李娜2,李潇旋1,郭泾1,2   

  1. 1.浙江中医药大学口腔医学院, 浙江 杭州 310053;2.宁波口腔医院正畸科, 浙江 宁波 315016
  • 发布日期:2025-07-08
  • 通讯作者: 郭泾. E-mail:guojing@sdu.edu.cn
  • 基金资助:
    宁波市科学技术局公益性计划(2022S053)

Correlation between 3D craniofacial and upper airway structures and apnea hypopnea index in children

SHEN Wei1, JIN Chenxi1, LI Na2, LI Xiaoxuan1, GUO Jing1,2   

  1. 1. School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China;
    2. Department of Orthodontics, Ningbo Stomatology Hospital, Ningbo 315016, Zhejiang, China
  • Published:2025-07-08

摘要: 目的 通过锥形束计算机断层扫描(cone beam computed tomography, CBCT)三维定量分析儿童颅颌面及上气道解剖特征,探讨其与呼吸暂停低通气指数(apnea hypopnea index, AHI)之间的相关性,以期筛选出能够预测阻塞性睡眠呼吸暂停(obstructive sleep apnea, OSA)严重程度的关键指标。 方法 连续纳入2022年6月至2024年6月因错牙合畸形或口呼吸主诉就诊于宁波口腔医院正畸科儿童患者80例,男53例,女27例,8~11岁,平均9.36岁。采用便携式睡眠监测获取AHI,行CBCT扫描测量腺样体体积率(adenoid volume/nasopharyngeal volume, AV/NPV)、上下颌骨宽度及位置、舌骨位置、上气道大小。通过分层回归分析控制患者的性别、体质量指数(body mass index, BMI)及腺样体大小后,评估颅颌面及上气道解剖变量对AHI的独立预测效能。 结果 Spearman 相关性分析结果显示,AV/NPV与AHI呈正相关(P<0.05),而下颌升支长度(mandibular ramus length, Ar-Go)、 上颌骨宽度(maxillary width, Mx-Mx)、下颌骨宽度(mandibular width, Go-Go)、气道最小截面积(minimum axial airway area, MAA)、鼻咽容积(retronasal airway volume, V-RNA)、腭咽容积(retropalatal airway volume, V-RPA)和舌咽容积(retrolingual airway volume, V-RLA)与AHI呈负相关(P<0.05)。分层回归分析首先纳入性别和BMI作为控制变量,结果显示性别和BMI所占方差(R2)等于0.002,模型差异无统计学意义(F(2,77)=0.067, P=0.935)。第二步将AV/NPV纳入分层回归模型,结果显示较第一步的方差变化(ΔR2)等于0.179,AV/NPV(β=0.441, P<0.001)具有正向预测AHI的作用。第三步将与AHI相关的CBCT测量指标纳入模型,结果显示ΔR2=0.273,其中Mx-Mx(β=-0.207, P=0.041)、Go-Go(β=-0.263, P=0.018)和MAA(β=-0.346, P<0.001)是AHI的独立预测因子。 结论 上气道及上下颌骨狭窄是儿童OSA的独立危险因素,其可为临床早期识别高风险患儿提供理论依据。

关键词: 锥形束计算机断层扫描, 阻塞性睡眠呼吸暂停, 呼吸暂停低通气指数, 腺样体, 分层回归分析

Abstract: Objective To investigate craniofacial and upper airway anatomical characteristics in children using cone beam computed tomography(CBCT)and their association with apnea hypopnea index(AHI), aiming to identify key predictive indicators for assessing the severity of obstructive sleep apnea(OSA). Methods A total of 80 pediatric patients who visited the Department of Orthodontics at Ningbo Stomatological Hospital between June 2022 and June 2024 with chief complaints of malocclusion or mouth breathing were consecutively enrolled in the study. The sample included 53 boys and 27 girls with a mean age of 9.36 years. Portable home polysomnography was performed to obtain AHI values, followed by CBCT scans to measure adenoid-to-nasopharynx volume ratio(AV/NPV), maxillary and mandibular width and position, hyoid bone position, and upper airway dimensions. Hierarchical regression analysis was conducted to evaluate the independent predictive value of craniofacial and upper airway variables for AHI after controlling for sex, body mass index(BMI), and adenoid size. Results Spearman correlation analysis showed a significant positive correlation between AV/NPV and AHI(P<0.05). In contrast, mandibular ramus length(Ar-Go), maxillary width(Mx-Mx),mandibular width(Go-Go), minimum axial airway area(MAA), retronasal airway volume(V-RNA), retropalatal airway volume(V-RPA)and retrolingual airway volume(V-RLA)were negatively correlated with AHI(P<0.05). In the hierarchical regression analysis, sex and BMI were entered as control variables in Step 1, accounting for only 0.2% of the variance in AHI(R2=0.002), with the model being non-significant(F(2,77)=0.067, P=0.935). In Step 2, the addition of AV/NPV significantly improved the model, with an increase in explained variance(ΔR2=0.179). AV/NPV was a significant positive predictor of AHI(β=0.441, P<0.001). In Step 3, CBCT-derived variables significantly associated with AHI were added to the model. This step further increased the explained variance(ΔR2=0.273). Among these, Mx-Mx(β=-0.207, P=0.041),Go-Go(β=-0.263, P=0.018)and MAA(β=-0.346, P<0.001)were identified as independent predictors of AHI. Conclusion Upper airway constriction, maxillary and mandibular deficiency serve as independent risk factors for pediatric OSA. These three-dimensional anatomical variables may provide a theoretical basis for early clinical identification of high-risk children.

Key words: Cone beam computed tomography, Obstructive sleep apnea, Apnea hypopnea index, Adenoid, Hierarchical regression analysis

中图分类号: 

  • R788
[1] 倪鑫. 中国儿童阻塞性睡眠呼吸暂停诊断与治疗指南(2020)[J]. 中国循证医学杂志, 2020, 20(8): 883-900. NI Xin, Chinese guideline for the diagnosis and treatment of childhood obstructive sleep apnea(2020)[J]. Chinese Journal Of Evidence-based Medicine, 2020, 20(8): 883-900.
[2] Brennan L, Kirkham FJ, Gavlak JC. Sleep-disordered breathing and comorbidities: role of the upper airway and craniofacial skeleton[J]. Nat Sci Sleep, 2020, 12: 907-936. doi: 10.2147/NSS.S146608
[3] Gulotta G, Iannella G, Vicini C, et al. Risk factors for obstructive sleep apnea syndrome in children: state of the art[J]. Int J of Environ Res Public Health, 2019, 16(18): 3235. doi: 10.3390/ijerph16183235
[4] Marcus CL, Moore RH, Rosen CL, et al. A randomized trial of adenotonsillectomy for childhood sleep apnea[J]. N Engl J Med, 2013, 368(25): 2366-2376.
[5] Suri JC, Sen MK, Venkatachalam VP, et al. Outcome of adenotonsillectomy for children with sleep apnea[J]. Sleep Med, 2015, 16(10): 1181-1186.
[6] Xu Q, Wang X, Liu P, et al. Correlation of cephalometric variables with obstructive sleep apnea severity among children: a hierarchical regression analysis[J]. Cranio, 2025, 43(1): 165-172.
[7] Xu Q, Wang X, Li N, et al. Craniofacial and upper airway morphological characteristics associated with the presence and severity of obstructive sleep apnea in Chinese children[J]. Front Pediatr, 2023, 11: 1124610. doi: 10.3389/fped.2023.1208674
[8] Savoldi F, Dagassan-Berndt D, Patcas R, et al. The use of CBCT in orthodontics with special focus on upper airway analysis in patients with sleep-disordered breathing[J]. Dentomaxillofac Radiol, 2024, 53(3): 178-188.
[9] Jessadapornchai T, Samruajbenjakun B, Chanmanee P, et al. 3D analysis of upper airway morphology related to obstructive sleep apnea severity[J]. J World Fed Orthod, 2024, 13(4): 175-180.
[10] 姜姣, 戈艳蕾, 付爱双, 等. 儿童阻塞性睡眠呼吸暂停低通气综合征的病因与治疗研究进展[J]. 华北理工大学学报(医学版), 2023, 25(6): 500-504. JIANG Jiao, GE Yanlei, FU Aishuang, et al. Research progress on the etiology and treatment of obstructive sleep apnea hypopnea syndrome in children[J]. Journal of North China University of Science and Technology(Health Sciences Edition), 2023, 25(6): 500-504.
[11] 魏芷静. 舌肌肌群功能训练对阻塞性睡眠呼吸暂停患者及慢性间歇低氧大鼠颏舌肌及其中枢调控的作用及机制[D]. 沈阳: 中国医科大学, 2023.
[12] 任晓勇. 阻塞性睡眠呼吸暂停合并症的研究现状和未来展望[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 1-5. REN Xiaoyong. Current status and future perspectives of research on obstructive sleep apnea comorbidities[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 1-5.
[13] Liao Z, Chen Y, Wu L, et al. Associations of obstructive sleep apnea risk with obesity, body composition and metabolic abnormalities in school-aged children and adolescents[J]. Nutrients, 2024, 16(15): 2419. doi: 10.3390/nu16152419
[14] Chuang HH, Huang CG, Hsu JF, et al. Weight status, autonomic function, and systemic inflammation in children with obstructive sleep apnea[J]. Int J Mol Sci, 2024, 25(16): 8951. doi: 10.3390/ijms25168951
[15] 宇克莉, 郑连斌, 李咏兰, 等. 中国人身体质量指数的地理性分布[J]. 人类学学报, 2018, 37(4): 653-663. YU Keli, ZHENG Lianbin, LI Yonglan, et al. Geographical distributions of body mass index in Chinese Han[J].Acta Anthropologica Sinica, 2018, 37(4): 653-663.
[16] 李咏兰, 张兴华, 孙泽阳, 等. 中国人的头面部形态特征[J]. 人类学学报, 2022, 41(3): 450-462. LI Yonglan, ZHANG Xinghua, SUN Zeyang, et al. Craniofacial morphological characteristics of Chinese populations[J]. Acta Anthropologica Sinica, 2022, 41(3): 450-462.
[17] Isaiah A, Kiss E, Olomu P, et al. Characterization of upper airway obstruction using cine MRI in children with residual obstructive sleep apnea after adenotonsillectomy[J]. Sleep Med, 2018, 50: 79-86. doi: 10.1016/j.sleep.2017.10.006
[18] Huang X, Gong X, Gao X. Age-related hypertrophy of adenoid and tonsil with its relationship with craniofacial morphology[J]. BMC Pediatr, 2023, 23(1): 163. doi: 10.1186/s12887-023-03979-2
[19] Tse KL, Savoldi F, Li KY, et al. Prevalence of adenoid hypertrophy among 12-year-old children and its association with craniofacial characteristics: a cross-sectional study[J]. Prog Orthod, 2023, 24(1): 31. doi: 10.1186/s40510-023-00481-4
[20] Bilston LE, Gandevia SC. Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea[J]. J Appl Physiol, 2014, 116(3): 314-324.
[21] Liu Y, Zhao T, Ngan P, et al. The dental and craniofacial characteristics among children with obstructive sleep apnoea: a systematic review and meta-analysis[J]. Eur J Orthod, 2023, 45(3): 346-355.
[22] Hsu WC, Kang KT, Yao CJ, et al. Evaluation of upper airway in children with obstructive sleep apnea using cone-beam computed tomography[J]. Laryngoscope, 2021, 131(3): 680-685.
[23] Shelton KE, Gay SB, Hollowell DE, et al. Mandible enclosure of upper airway and weight in obstructive sleep apnea[J]. Am Rev Respir Dis, 1993, 148(1): 195-200.
[24] Chi L, Comyn FL, Mitra N, et al. Identification of craniofacial risk factors for obstructive sleep apnoea using three-dimensional MRI[J]. Eur Respir J, 2011, 38(2): 348-358.
[25] Pae EK, Harper RM. Intermittent hypoxia in neonatal rodents affects facial bone growth[J]. PLoS One, 2023, 18(10): e0282937. doi: 10.1371/journal.pone.0282937
[26] Calvin AD, Albuquerque FN, Lopez-Jimenez F, et al. Obstructive sleep apnea, inflammation, and the metabolic syndrome[J]. Metab Syndr Relat Disord, 2009, 7(4): 271-278.
[27] 陈雪凌, 吴子忠, 刘东旭, 等. 前方牵引联合快速扩弓对安氏Ⅲ类错牙合畸形患者上气道影响的CBCT研究[J]. 山东大学学报(医学版), 2015, 53(8): 71-78. CHEN Xueling, WU Zizhong, LIU Dongxu, et al. CBCT evaluation of the upper airway morphological changes in skeletal Class Ⅲ malocclusion patients using protraction and rapid maxillary expansion appliance[J]. Journal of Shandong University(Health Sciences), 2015, 53(8): 71-78.
[28] Xie B, Zhang L, Lu Y. The role of rapid maxillary expansion in pediatric obstructive sleep apnea: Efficacy, mechanism and multidisciplinary collaboration[J]. Sleep Med Rev, 2023, 67: 101733. doi: 10.1016/j.smrv.2022.101733
[29] Duan J, Xia W, Li X, et al. Airway morphology, hyoid position, and serum inflammatory markers of obstructive sleep apnea in children treated with modified twin-block appliances[J]. BMC Oral Health, 2025, 25(1): 162. doi: 10.1186/s12903-025-05528-y
[30] Serra-Torres S, Bellot-Arcís C, Montiel-Company JM, et al. Effectiveness of mandibular advancement app-liances in treating obstructive sleep apnea syndrome: a systematic review[J]. Laryngoscope, 2016, 126(2): 507-514.
[1] 赵天然,刘东旭. 上颌快速扩弓联合前方牵引对替牙期骨性Ⅲ类错牙合畸形的矫治疗效[J]. 山东大学学报 (医学版), 2024, 62(3): 77-86.
[2] 赵亚庆, 徐静雯,王晓,侯应龙,高梅. 基于氧化应激探讨硫化氢改善阻塞性睡眠呼吸暂停诱发房颤的作用机制[J]. 山东大学学报 (医学版), 2022, 60(12): 7-12.
[3] 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5.
[4] 杨丽萍,慕婷婷,杨玉娟,张宇,宋西成. 吸入性变应原对腺样体肥大合并支气管哮喘患儿肺功能影响[J]. 山东大学学报 (医学版), 2020, 58(3): 107-112.
[5] 郭静, 张宇,杨玉娟,孙月眉,刘丽萍,宋西成. 气道管理流程在儿童阻塞性睡眠呼吸暂停低通气综合征患者加速康复中的应用[J]. 山东大学学报 (医学版), 2019, 57(9): 54-58.
[6] 张红霞,徐永红,陈莉,龚辉成. 成人阻塞性睡眠呼吸暂停低通气综合征外周血TM、MPO的检测及意义[J]. 山东大学学报(医学版), 2016, 54(12): 67-71.
[7] 闫静,侯瑾,盛颖,王波涛,祝康,康全清. 间歇性缺氧大鼠模型的建立及评价[J]. 山东大学学报(医学版), 2013, 51(06): 53-56.
[8] 杜林娜1,郭泾2. 口腔矫治器治疗OSAS有效者和无效者的比较[J]. 山东大学学报(医学版), 2012, 50(8): 120-123.
[9] 高春艳,刘运秋 . 瘦素受体基因Pro1019Pro多态性与阻塞性睡眠呼吸暂停低通气综合征相关性研究[J]. 山东大学学报(医学版), 2012, 50(2): 87-.
[10] 刘维英,余勤,张佳宾,岳红梅,濮家源. OSAHS患者血浆β内啡肽、神经肽Y及脑肠肽Ghrelin水平变化及CPAP干预研究[J]. 山东大学学报(医学版), 2012, 50(1): 89-93.
[11] 付丽,王岩,李延忠. 腺样体、扁桃体切除术对睡眠呼吸障碍
儿童行为异常的治疗意义
[J]. 山东大学学报(医学版), 2009, 47(02): 92-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!