您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (4): 83-93.doi: 10.6040/j.issn.1671-7554.0.2024.0470

• 临床医学 • 上一篇    

2018—2021年山东省儿童与成人临床分离真菌的构成与主要菌种的体外抗真菌药物敏感性监测

王梦园,张春艳,于文文,寇琳娜,王世富   

  1. 山东大学附属儿童医院临床微生物科, 山东 济南 250022
  • 发布日期:2025-04-08
  • 通讯作者: 王世富. E-mail:wshfu709@163.com
  • 基金资助:
    济南市卫生健康委员会科技发展项目(2022-1-45)

Composition and antifungal susceptibility surveillance of clinically isolated fungi from children and adults in Shandong Province from 2018 to 2021

WANG Mengyuan, ZHANG Chunyan, YU Wenwen, KOU Linna, WANG Shifu   

  1. Clinical Microbiology Department, Childrens Hospital Affiliated to Shandong University, Jinan 250022, Shandong, China
  • Published:2025-04-08

摘要: 目的 对2018年至2021年山东省临床分离的真菌进行监测,比较儿童与成人患者分离真菌的构成与药物敏感性。 方法 基于山东省儿童细菌&真菌耐药监测网(Shandong Province pediatric bacterial & fungal antimicrobial resistance surveillance system, SPARSS),收集2018年至2021年山东省47所综合医院、11所妇幼保健医院及1所儿童医院临床分离真菌的信息,使用WHONET V5.6软件分析不同人群的真菌构成及药物敏感性情况。 结果 共收集真菌15 348株,其中95.5%分离于成人,4.5%分离于儿童。分离的真菌主要为念珠菌(78.4%)和曲霉菌(17.8%)。念珠菌以白念珠菌(41.8%)、热带念珠菌(22.7%)、光滑念珠菌(17.5%)和近平滑念珠菌(11.0%)为主;曲霉菌以烟曲霉(53.7%)、黄曲霉(15.3%)和黑曲霉(7.2%)为主。分离自成人的前五位真菌为白念珠菌(32.1%)、热带念珠菌(18.1%)、光滑念珠菌(14.0%)、烟曲霉(9.8%)和近平滑念珠菌(8.5%);分离自儿童的前五位真菌为白念珠菌(47.3%)、热带念珠菌(11.2%)、近平滑念珠菌(10.6%)、光滑念珠菌(6.8%)和烟曲霉(4.4%)。无菌标本分离的真菌共1 989株,以念珠菌(90.2%)和隐球菌(4.3%)为主。4年间,成人分离的真菌构成无明显的变化趋势,儿童分离的白念珠菌占比降低而非白念珠菌占比升高,腹腔积液分离的白念珠菌占比由2018年的61.8%降至2021年的46.2%。大多数念珠菌对两性霉素B敏感性较高,野生型率均>97%。对唑类药物的敏感性差异较大:白念珠菌和近平滑念珠菌对氟康唑和伏立康唑的敏感率分别为91.7%/84.7%和91.6%/87.4%,热带念珠菌对氟康唑和伏立康唑的敏感率分别为67.8%和40.6%。2018至2021年,热带念珠菌对唑类药物的敏感性持续降低,对氟康唑和伏立康唑的敏感率从2018年的70.4%/46.4%降至2021年的65.3%/35.2%。分离自儿童与成人的部分念珠菌对唑类药物的耐药性存在差异,分离自儿童的热带念珠菌对氟康唑和伏立康唑的耐药率分别为40.6%和32.8%,高于成人分离株的27.4%和23.2%;分离自儿童的光滑念珠菌对氟康唑和伏立康唑的耐药率/非野生型率分别为16.2%和25.7%,高于成人分离株的3.4%和18.0%。 结论 山东省临床分离的真菌以念珠菌和曲霉菌为主,成人与儿童的菌种构成和药物敏感性存在差异,儿童患者白念珠菌占比逐年下降的趋势及其非白念珠菌对唑类药物更高的耐药率使得儿童真菌耐药的形势更加严峻。此外,热带念珠菌对氟康唑敏感率的逐年下降亦值得关注并采取对应措施。

关键词: 真菌, 体外抗真菌药物敏感性试验, 成人, 儿童, 唑类, 热带念珠菌

Abstract: Objective To monitor the clinically isolated fungi in Shandong Province from 2018 to 2021, and compare the difference in composition and antifungal drug sensitivity of isolated fungi between children and adults. Methods Based on the Shandong Province pediatric bacterial & fungal antimicrobial resistance surveillance system(SPARSS), clinical isolation fungal information from 47 comprehensive hospitals, 11 maternal and child health hospitals, and 1 childrens hospital in Shandong Province from 2018 to 2021 was collected, and WHONET V5.6 software was used to analyze the composition and drug sensitivity of fungi in different populations. Results A total of 15,348 strains of fungi were collected, of which 95.5% were isolated from adults and 4.5% from children. The predominant fungi isolated were Candida(78.4%)and Aspergillus(17.8%). Among the Candida isolates, C. albicans(41.8%), C. tropicalis(22.7%), C. glabrata(17.5%), and C. parapsilosis(11.0%)were the most common, while Aspergillus isolates were predominantly composed of A. fumigatus(53.7%), A. flavus(15.3%), and A. niger(7.2%). The top five fungi isolated from adults were C. albicans(32.1%), C. tropicalis(18.1%), C. glabrata(14.0%), A. fumigatus(9.8%)and C. parapsilosis(8.5%). For children, the top five isolated fungi were C. albicans(47.3%), C. tropicalis(11.2%), C. parapsilosis(10.6%), C. glabrata(6.8%), and A. fumigatus(4.4%). A total of 1,989 fungal isolates were obtained from sterile specimens, predominantly composed of Candida(90.2%)and Cryptococcus(4.3%). During the 4 years, no significant trend was observed in the fungal composition from adults. However, among the isolates from children, there was a decrease in the proportion of C. albicans and an increase in non-albicans Candida. Overall, the proportion of abdominal dropsy isolates identified as C. albicans decreased from 61.8% in 2018 to 46.2% in 2021. Most Candida species exhibited high sensitivity to amphotericin B, with wild-type rates exceeding 97%. Candida species varied significantly in their susceptibility to azoles, with the susceptibility rates of C. albicans and C. parapsilosis to fluconazole and voriconazole were 91.7%/84.7% and 91.6%/87.4%, respectively, while C. tropicalis were 67.8% and 40.6%. C. tropicalis showed a sustained decrease in susceptibility to azoles, with susceptibility rates to fluconazole and voriconazole decreased from 70.4%/46.4% in 2018 to 65.3%/35.2% in 2021. The resistance of some Candida species from children and adults to azoles was different. The resistance rates of C. tropicalis isolated from children to fluconazole and voriconazole were 40.6% and 32.8%, higher than 27.4% and 23.2% in adult isolates. The resistance/non-wild type rates of C. glabrata isolated from children to fluconazole and voriconazole were 16.2% and 25.7%, higher than 3.4% and 18.0% in adult isolates. Conclusion In Shandong Province, Candida and Aspergillus are the predominant fungi isolated. There are differences in the fungal species composition and drug sensitivity between adults and children. The declining trend of C. albicans in pediatric patients and the higher resistance of non-albicans Candida to azoles contribute to a more critical situation of antifungal resistance in pediatric fungi. Additionally, the annual decrease in susceptibility of C. tropicalis to fluconazole also warrants attention and corresponding measures.

Key words: Fungi, In vitro antifungal susceptibility test, Adult, Children, Azoles, Candida tropicalis

中图分类号: 

  • R379
[1] Logan C, Martin-Loeches I, Bicanic T. Invasive candidiasis in critical care: challenges and future directions[J]. Intensive Care Med, 2020, 46(11): 2001-2014.
[2] Lass-Flörl C, Kanj SS, Govender NP, et al. Invasive candidiasis[J]. Nat Rev Dis Primers, 2024, 10(1): 20. doi:10.1038/s41572-024-00503-3
[3] Wang Y, Fan X, Wang H, et al. Continual decline in azole susceptibility rates in Candida tropicalis over a 9-year period in China[J]. Front Microbiol, 2021, 12: 702839. doi:10.3389/fmicb.2021.702839
[4] Fang WJ, Wu JQ, Cheng MR, et al. Diagnosis of invasive fungal infections: challenges and recent developments[J]. J Biomed Sci, 2023, 30(1): 42. doi:10.1186/s12929-023-00926-2
[5] Pfaller MA, Diekema DJ, Turnidge JD, et al. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997-2016[J]. Open Forum Infect Dis, 2019, 6(Suppl 1): S79-S94.
[6] Arendrup MC, Arikan-Akdagli S, Jorgensen KM, et al. European candidaemia is characterised by notable differential epidemiology and susceptibility pattern: results from the ECMM Candida III Study [J]. J Infect, 2023, 87(5): 428-437.
[7] Xiao M, Sun ZY, Kang M, et al. Five-year national surveillance of invasive candidiasis: species distribution and azole susceptibility from the China hospital invasive fungal surveillance net(CHIF-NET)study[J]. J Clin Microbiol, 2018, 56(7): e00577-18. doi:10.1128/JCM.00577-18
[8] Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America[J]. Clin Infect Dis, 2016, 62(4): e1-e50.
[9] 尚红, 王毓三, 申子瑜. 全国临床检验操作规程[M]. 4版.北京: 人民卫生出版社, 2015.
[10] Zhang L, Wang H, Xiao M, et al. The widely used ATB FUNGUS 3 automated readings in China and its misleading high MICs of Candida spp. to azoles: challenges for developing countries clinical microbiology labs[J]. PLoS One, 2014, 9(12): e114004. doi:10.1371/journal.pone.0114004
[11] CLSI. Performance Standards for antifungal susceptibility testing of yeasts. 3rd Ed. CLSI Supplement M27M44s[S]. Wayne, PA: Clinical and Laboratory Standards Institute, 2022.
[12] CLSI. Epidemiological cutoff values for antifungal susceptibility testing. 4th Ed. CLSI Supplement M57s[S]. Wayne, PA: Clinical and Laboratory Standards Institute, 2022.
[13] Denning DW. Global incidence and mortality of severe fungal disease[J]. Lancet Infect Dis, 2024, 24(7): e428-e438.
[14] Zeng ZR, Ding YH, Tian G, et al. A seven-year surveillance study of the epidemiology, antifungal susceptibility, risk factors and mortality of candidaemia among paediatric and adult inpatients in a tertiary teaching hospital in China[J]. Antimicrob Resist Infect Control, 2020, 9(1): 133. doi:10.1186/s13756-020-00798-3
[15] Xu H, Yu SY, Zhou ML, et al. Epidemiology and antifungal susceptibility patterns of invasive fungal infections from 2012 to 2014 in a teaching hospital in Central China[J]. Infect Drug Resist, 2019, 12: 3641-3651. doi:10.2147/IDR.S227839
[16] Wang B, He XL, Lu F, et al. Candida isolates from blood and other normally sterile foci from ICU patients: determination of epidemiology, antifungal susceptibility profile and evaluation of associated risk factors[J]. Front Public Health, 2021, 9: 779590. doi:10.3389/fpubh.2021.779590
[17] Song N, Kan S, Pang Q, et al. A prospective study on vulvovaginal candidiasis: multicentre molecular epidemiology of pathogenic yeasts in China[J]. J Eur Acad Dermatol Venereol, 2022, 36(4): 566-572.
[18] Chen M, Xu Y, Hong N, et al. Epidemiology of fungal infections in China[J]. Front Med, 2018, 12(1): 58-75.
[19] Zheng YJ, Xie T, Wu L, et al. Epidemiology, species distribution, and outcome of nosocomial Candida spp. bloodstream infection in Shanghai: an 11-year retrospective analysis in a tertiary care hospital[J]. Ann Clin Microbiol Antimicrob, 2021, 20(1): 34. doi:10.1186/s12941-021-00441-y
[20] Wang QQ, Cai X, Li Y, et al. Molecular identification, antifungal susceptibility, and resistance mechanisms of pathogenic yeasts from the China antifungal resistance surveillance trial(CARST-fungi)study[J]. Front Microbiol, 2022, 13: 1006375. doi:10.3389/fmicb.2022.1006375
[21] Zeng ZR, Tian G, Ding YH, et al. Surveillance study of the prevalence, species distribution, antifungal susceptibility, risk factors and mortality of invasive candidiasis in a tertiary teaching hospital in Southwest China[J]. BMC Infect Dis, 2019, 19(1): 939. doi:10.1186/s12879-019-4588-9
[22] 臧凤, 刘娟, 李松琴, 等. 2022年某院侵袭性念珠菌医院感染临床及流行病学特征[J]. 中华医院感染学杂志, 2024, 34(5): 668-672. ZANG Feng, LIU Juan, LI Songqin, et al. Cliniacl and epidemiological characteristics of nosocomial infection caused by invasire Candida from a hospital in 2022[J]. Chinese Journal of Nosocomiology, 2024, 34(5): 668-672.
[23] 王利可, 陈小娟, 张优, 等. 海南省2013-2022年某真菌监测网点分离念珠菌的耐药性及血清学检测[J]. 中国热带医学, 2024, 24(2): 136-142. WANG Like, CHEN Xiaojuan, ZHANG You, et al. Drug resistance and serological detection of Candida isolated from a fungal surveillance network in Hainan Province from 2013 to 2022[J]. China Tropical Medicine, 2024, 24(2): 136-142.
[24] 张松迪, 王晓东, 艾柯代·玉苏甫, 等. 新疆某医院侵袭性念珠菌感染的菌种分布、药物敏感性及耐药基因初步分析[J]. 中国真菌学杂志, 2023, 18(6): 493-500. ZHANG Songdi, WANG Xiaodong, AIKEDAI Yusufu, et al. Preliminary analysis of strains distribution, drug susceptibility characteristics and resistance gene of invasive Candida infections in a hospital in Xinjiang[J]. Chinese Journal of Mycology, 2023, 18(6): 493-500.
[25] 李彦, 邓劲, 康梅. 四川地区29家医院临床分离真菌的菌种分布及耐药性监测[J]. 中国抗生素杂志, 2023, 48(12): 1403-1408. LI Yan, DENG Jin, KANG Mei. Distribution and drug resistance monitoring of clinical fungi isolated from 29 hospitals in Sichuan area[J]. Chinese Journal of Antibiotics, 2023, 48(12): 1403-1408.
[26] Ferngren G, Yu D, Unalan-Altintop T, et al. Epidemiological patterns of candidaemia: a comprehensive analysis over a decade[J]. Mycoses, 2024, 67(5): e13729. doi:10.1111/myc.13729
[27] Otto WR, Green AM. Fungal infections in children with haematologic malignancies and stem cell transplant reci-pients[J]. Br J Haematol, 2020, 189(4): 607-624.
[28] 寇琳娜, 张春艳, 李政, 等. 山东省46家医院临床分离真菌的耐药性监测[J]. 中华临床感染病杂志, 2021, 14(1): 46-53, 80. KOU Linna, ZHANG Chunyan, LI Zheng, et al. Surveillance of drug resistance of clinically isolated fungi strains from 46 hospitals in Shandong Province[J]. Chinese Journal of Clinical Infectious Diseases, 2021, 14(1): 46-53, 80.
[29] Díaz-García J, Machado M, Alcalá L, et al. Antifungal resistance in Candida spp within the intra-abdominal cavity: study of resistance acquisition in patients with serial isolates[J]. Clin Microbiol Infect, 2023, 29(12): 1604.e1-e6.
[30] Song YG, Chen XL, Yan Y, et al. Prevalence and antifungal susceptibility of pathogenic yeasts in China: a 10-year retrospective study in a teaching hospital[J]. Front Microbiol, 2020, 11: 1401. doi:10.3389/fmicb.2020.01401
[31] Wang PL, Li YM, Gao L, et al. In vitro characterization and molecular epidemiology of Cryptococcus spp. isolates from non-HIV patients in Guangdong, China[J]. Front Microbiol, 2024, 14: 1295363. doi:10.3389/fmicb.2023.1295363
[32] Zhang JL, Wang ZG, Chen Y, et al. Antifungal susceptibility and molecular characteristics of Cryptococcus spp. based on whole-genome sequencing in Zhejiang Province, China[J]. Front Microbiol, 2022, 13: 991703. doi:10.3389/fmicb.2022.991703
[1] 史文新,樊幼君,陈元,刘海燕,孙立锋,郭璐. 小儿乳糜泻2例并文献复习[J]. 山东大学学报 (医学版), 2025, 63(2): 51-57.
[2] 肖长春,余林玲,鄢德瑞,朱昱. 合肥市空气O3对儿童呼吸系统疾病急诊就诊量的影响[J]. 山东大学学报 (医学版), 2025, 63(2): 95-103.
[3] 戴晨阳,郭慧. 白细胞介素-36在真菌性角膜炎中的免疫作用及机制[J]. 山东大学学报 (医学版), 2024, 62(8): 67-73.
[4] 闫金燕,杨春,李雷,吴福玲,焦永莉,张晓蔚,李晶,张瑞珍,王磊,马香. 山东省儿童百日咳感染与哮喘的相关性[J]. 山东大学学报 (医学版), 2024, 62(7): 33-41.
[5] 曹丹凤,李慧. 儿童期不良经历对妊娠期抑郁症状的影响:母胎依恋的中介作用[J]. 山东大学学报 (医学版), 2024, 62(3): 87-91.
[6] 张臻,苗双,齐世洲,武艳,蔡国伟,宫凯凯. 黄河三角洲盐碱土壤来源真菌Penicillium terrigenumRD 4-3次级代谢产物及其抗炎抗肿瘤活性[J]. 山东大学学报 (医学版), 2024, 62(3): 28-38.
[7] 吕龙飞,李继如,翟允鹏,赵华善,郭锐,许洪修,黄赛,张士松. 单术者双孔法在电视辅助胸腔镜手术治疗儿童叶外型肺隔离症中的早期临床应用[J]. 山东大学学报 (医学版), 2024, 62(1): 57-62.
[8] 符晓莉,魏绪霞,徐俊杰,薛宁,张乐,陈红苓. 儿童自身免疫性肠病1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(9): 118-124.
[9] 周加敏,仇静静,陈秀梅,宋西成,孙岩. 儿童气管支气管异物936例临床分析[J]. 山东大学学报 (医学版), 2023, 61(4): 71-76.
[10] 杨晓斐,韩波,姜殿东,吕建利,伊迎春,张建军,赵立健,王静,王艳,袁辉. 经导管射频消融术治疗儿童快速性心律失常972例临床分析[J]. 山东大学学报 (医学版), 2023, 61(2): 49-56.
[11] 王荣荣,马晓庆. 成人急性B淋巴细胞白血病合并高钙危象1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(12): 100-106.
[12] 宋绍秀,徐勇胜. 儿童肺炎支原体肺炎合并肺栓塞9例临床分析并文献复习[J]. 山东大学学报 (医学版), 2023, 61(11): 96-103.
[13] 高辉香,宋阳. 特立帕肽治疗常染色体显性遗传低钙血症1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(11): 116-120.
[14] 曹丹凤,刘宗花,王君芝,张国翔. 女性儿童期家庭功能障碍对成年后妊娠期抑郁症状的独立和累积作用[J]. 山东大学学报 (医学版), 2022, 60(6): 97-101.
[15] 王菊,高帅,范玉琛,王凯. 肝衰竭并发真菌感染综合治疗1例[J]. 山东大学学报 (医学版), 2022, 60(5): 125-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!