您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (8): 67-73.doi: 10.6040/j.issn.1671-7554.0.2024.0563

• • 上一篇    

白细胞介素-36在真菌性角膜炎中的免疫作用及机制

戴晨阳,郭慧   

  • 发布日期:2024-09-20
  • 通讯作者: 郭慧. E-mail:guohui516@126.com
  • 基金资助:
    国家自然基金青年项目(82101088)

Progress in the immune effect and mechanism of interleukin-36 in fungal keratitis

DAI Chenyang, GUO Hui   

  1. Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2024-09-20

摘要: 真菌性角膜炎是较为常见、致残致盲率极高的感染性眼病,因其介导错综复杂的免疫应答系统而影响疾病的诊治和预后,因此,探讨其发病规律和机体免疫系统的调控机制,是当今眼科领域研究的前沿和关键。最新研究表明,在人角膜上皮细胞和小鼠白色念珠菌(candida albicans, CA)角膜炎过程中,白细胞介素-36(interleukin-36,IL-36)γ/R通过介导天然免疫和辅助性T细胞17(T helper cell 17, Th17)型获得性免疫发挥保护作用。本文针对近年来真菌感染角膜后机体免疫保护性作用的调控机制研究进展进行综述。

关键词: 真菌性角膜炎, 角膜感染, 白细胞介素-36, 免疫调控

Abstract: Fungal keratitis is the most common infectious eye disease with a very high rate of disability and blindness. Its complex immune response system affects the diagnosis, treatment, and prognosis of the disease. Therefore, exploring its pathogenesis and the regulatory mechanisms of the bodys immune system has become a frontier and key in the field of ophthalmology research today. The latest research indicates that during the process of human corneal epithelial cells and mouse candida albicans(CA)keratitis, interleukin-36γ/IL-36R plays a protective role by mediating innate immunity and Th17 type acquired immunity. This article reviews the recent research progress on the regulatory mechanisms of the bodys immune protective role after fungal infection of the cornea.

Key words: Fungal keratitis, Corneal infections, Interleukin-36, Immunoregulation

中图分类号: 

  • R772.2
[1] Ghenciu LA, Faur AC, Bolintineanu SL, et al. Recent advances in diagnosis and treatment approaches in fungal keratitis: a narrative review [J]. Microorganisms, 2024, 12(1):161.
[2] 王晓燕,齐眉,李玉瑭,等.大蒜素与两性霉素B体外联合应用抑制白色念珠菌菌丝形成的研究[J].山东大学学报(医学版), 2010, 48(5): 23-27. WANG Xiaoyan, QI Mei, LI Yutang, et al. Study of the combination of allicin and amphotericin B inhibiting hyphae formation of Candida albicans in vitro[J]. Journal of Shandong University(Health Sciences), 2010, 48(5): 23-27.
[3] Das S, Dsouza S, Gorimanipalli B, et al. ocular surface infection mediated molecular stress responses: a review [J]. Int J Mol Sci, 2022, 23(6): 3111.
[4] Fang X, Lian H, Bi S, et al. Roles of pattern recognition receptors in response to fungal keratitis [J]. Life Sci, 2022, 307: 120881. doi:10.1016/j.lfs.2022.120881.
[5] Pearlman E, Sun Y, Roy S, et al. Host defense at the ocular surface [J]. Int Rev Immunol, 2013, 32(1): 4-18.
[6] 李妍,李丽红,戴敏,等.真菌性角膜炎角膜组织NOD1、NF-κBp65表达的变化以及炎症细胞浸润情况[J].眼科新进展, 2023, 43(2): 89-93. LI Yan, LI Lihong, DAI Min, et al. Changes in expression of nucleotide-binding oligomerization domain-contai-ning protein 1 and nuclear factor kappa-Bp65 and infiltration of inflammatory cells in the cornea with fungal keratitis[J]. Recent Advances in Ophthalmology, 2023, 43(2): 89-93.
[7] Dai C, Wu J, Chen C, et al. Interactions of thymic stromal lymphopoietin with TLR2 and TLR4 regulate anti-fungal innate immunity in Aspergillus fumigatus-induced corneal infection [J]. Exp Eye Res, 2019, 182: 19-29.doi:10.1016/j.exer.2019.02.020.
[8] Han F, Guo H, Wang L, et al. TSLP produced by aspergillus fumigatus-stimulated DCs promotes a Th17 response through the JAK/STAT signaling pathway in fungal keratitis [J]. Invest Ophthalmol Vis Sci, 2020, 61(14): 24.
[9] Ren X, Wang L, Wu X. A potential link between TSLP/TSLPR/STAT5 and TLR2/MyD88/NFκB-p65 in human corneal epithelial cells for Aspergillus fumigatus tolerance [J]. Mol Immunol, 2016, 71: 98-106. doi:10.1016/j.molimm.2015.12.014.
[10] Xu X, Wei Y, Pang J, et al. time-course transcriptomic analysis reveals the crucial roles of PANoptosis in fungal keratitis [J]. Invest Ophthalmol Vis Sci, 2023, 64(3): 6.
[11] Hu J, Hu Y, Chen S, et al. Role of activated macrophages in experimental Fusarium solani keratitis [J]. Exp Eye Res, 2014, 129: 57-65. doi:10.1016/j.exer.2014.10.014.
[12] 朱彬彬.NETs的形成对铜绿假单胞菌性角膜炎进展和预后影响的研究[D].杭州: 浙江大学, 2018.
[13] Hua X, Chi W, Su L, et al. ROS-induced Oxidative Injury involved in Pathogenesis of Fungal Keratitis via p38 MAPK Activation [J]. Sci Rep, 2017, 7(1): 10421.
[14] Bassoy EY, Towne JE, Gabay C. Regulation and function of interleukin-36 cytokines [J]. Immunol Rev, 2018, 281(1): 169-178.
[15] Bensen JT, Dawson PA, Mychaleckyj JC, et al. Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12-14 [J]. J Interf Cytokine Res, 2001, 21(11): 899-904.
[16] Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity [J]. Immunol Rev, 2018, 281(1): 8-27.
[17] Nicklin MJH, Barton JL, Nguyen M, et al. A sequence-based map of the nine genes of the human interleukin-1 cluster [J]. Genomics, 2002, 79(5): 718-725.
[18] Zhou L, Todorovic V. Interleukin-36: structure, signaling and function [J]. Adv Exp Med Biol, 2021, 21: 191-210. doi:10.1007/5584_2020_488.
[19] Afonina IS, Müller C, Martin SJ, et al. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme [J]. Immunity, 2015, 42(6): 991-1004.
[20] Clancy DM, Henry CM, Sullivan GP, et al. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines [J]. FEBS J, 2017, 284(11): 1712-1725.
[21] Henry CM, Sullivan GP, Clancy DM, et al. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines [J]. Cell Rep, 2016, 14(4): 708-722.
[22] Oneill LA. Towards an understanding of the signal transduction pathways for interleukin 1 [J]. Biochim Biophys Acta, 1995, 1266(1): 31-44.
[23] Oneill LA, Greene C. Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants [J]. J Leukoc Biol, 1998, 63(6): 650-657.
[24] Xu Y, Tao X, Shen B, et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains [J]. Nature, 2000, 408: 111-115.doi:10.1038/35040600.
[25] Sims JE, March CJ, Cosman D, et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily [J]. Science, 1988, 241(4865): 585-589.
[26] Wang DL, Zhang SY, Li L, et al. Structural insights into the assembly and activation of IL-1β with its receptors [J]. Nat Immunol, 2010, 11: 905-911. doi:10.1038/ni.1925.
[27] Medzhitov R, Preston-Hurlburt P, Kopp E, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways [J]. Mol Cell, 1998, 2(2): 253-258.
[28] Dunne A, ONeill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense [J]. Sci STKE, 2003, 2003(171): re3. doi:10.1126/stke.2003.171.re3.
[29] Tiwari RL, Singh V, Singh A, et al. IL-1R-associated kinase-1 mediates protein kinase Cδ-induced IL-1β production in monocytes [J]. J Immunol, 2011, 187(5): 2632-2645.
[30] 杨薇,钟波.IL-36细胞因子在炎性疾病与肿瘤中的作用机制[J].中国细胞生物学学报, 2022, 44(4): 737-746. YANG Wei, ZHONG Bo. The roles of IL-36 cytokines in inflammatory diseases and cancers[J]. Chinese Journal of Cell Biology, 2022, 44(4): 737-746.
[31] Yuan ZC, Xu WD, Liu XY, et al. Biology of IL-36 signaling and its role in systemic inflammatory diseases[J]. Front Immunol, 2019, 10: 2532. doi:10.3389/fimmu.2019.02532.
[32] Macleod T, Berekmeri A, Bridgewood C, et al. The immunological impact of IL-1 family cytokines on the epidermal barrier[J]. Front Immunol, 2021, 12: 808012. doi:10.3389/fimmu.2021.808012.
[33] Russell SE, Horan RM, Stefanska AM, et al. IL-36α expression is elevated in ulcerative colitis and promotes colonic inflammation [J]. Mucosal Immunol, 2016, 9(5): 1193-204.
[34] Scheibe K, Backert I, Wirtz S, et al. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo [J]. Gut, 2017, 66(5): 823-838.
[35] Queen D, Ediriweera C, Liu L. Function and regulation of IL-36 signaling in inflammatory diseases and cancer development[J]. Front Cell Dev Biol, 2019, 7: 317. doi:10.3389/fcell.2019.00317.
[36] Vigne S, Palmer G, Martin P, et al. IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4+ T cells [J]. Blood, 2012, 120(17): 3478-3487.
[37] Vigne S, Palmer G, Lamacchia C, et al. IL-36R ligands are potent regulators of dendritic and T cells [J]. Blood, 2011, 118(22): 5813-5823.
[38] Foster AM, Baliwag J, Chen C S, et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin [J]. J Immunol, 2014, 192(12): 6053-6061.
[39] Keller J, O Siorain JR, Kündig TM, et al. Molecular aspects of Interleukin-36 cytokine activation and regulation [J]. Biochem Soc Trans, 2024, 52(4): 1591-1604.
[40] Macleod T, Ainscough JS, Hesse C, et al. The proinflammatory cytokine il-36γ is a global discriminator of harmless microbes and invasive pathogens within epithelial tissues [J]. Cell Rep, 2020, 33(11): 108515.
[41] Heath JE, Scholz GM, Veith PD, et al. IL-36γ regulates mediators of tissue homeostasis in epithelial cells [J]. Cytokine, 2019, 119: 24-31.doi:10.1016/j.cyto.2019.02.012.
[42] Nanjo Y, Newstead MW, Aoyagi T, et al. Overlapping roles for interleukin-36 cytokines in protective host defense against murine Legionella pneumophila pneumonia[J]. Infect Immun, 2019, 87(1): e00583-e00518.
[43] Kovach MA, Singer B, Martinez-Colon G, et al. IL-36γ is a crucial proximal component of protective type-1-mediated lung mucosal immunity in Gram-positive and-negative bacterial pneumonia [J]. Mucosal Immunol, 2017, 10(5): 1320-1334.
[44] Verma AH, Zafar H, Ponde NO, et al. IL-36 and IL-1/IL-17 drive immunity to oral candidiasis via parallel mechanisms[J]. J Immunol, 2018, 201(2): 627-634.
[45] Braegelmann J, Braegelmann C, Bieber T, et al. Candida induces the expression of IL-36γ in human keratinocytes: implications for a pathogen-driven exacerbation of psoriasis? [J]. J Eur Acad Dermatol Venereol, 2018, 32(11): 403-406.
[46] Miyachi H, Wakabayashi S, Sugihira T, et al. Keratinocyte IL-36 receptor/MyD88 signaling mediates Malassezia-induced IL-17–dependent skin inflammation[J]. J Infect Dis, 2021, 223(10): 1753-1765.
[47] Gao N, Me R, Dai C, et al. Opposing effects of IL-1Ra and IL-36Ra on innate immune response to Pseudomonas aeruginosa infection in C57BL/6 mouse corneas[J]. J Immunol, 2018, 201(2): 688-699.
[48] Dai C, Me R, Gao N, et al. Role of IL-36γ/IL-36R signaling in corneal innate defense against Candida albicans keratitis[J]. Invest Ophthalmol Vis Sci, 2021, 62(6): 10.
[49] Cho WJ, Elbasiony E, Singh A, et al. IL-36γ augments ocular angiogenesis by promoting the vascular endothelial growth factor-vascular endothelial growth factor receptor axis[J]. Am J Pathol, 2023, 193(11): 1740-1749.
[50] Chen Q, Gao N, Yu FS. Interleukin-36 receptor signaling attenuates epithelial wound healing in C57BL/6 mouse corneas[J]. Cells, 2023, 12(12): 1587.
[51] Kuo MT, Chen JL, Hsu SL, et al. An omics approach to diagnosing or investigating fungal keratitis[J]. Int J Mol Sci, 2019, 20(15): E3631.
[52] Sharma N, Bagga B, Singhal D, et al. Fungal keratitis: a review of clinical presentations, treatment strategies and outcomes[J]. Ocul Surf, 2022, 24: 22-30. doi:10.1016/j.jtos.2021.12.001.
[53] Zemba M, Radu M, Istrate S, et al. Intrastromal injections in the management of infectious keratitis[J]. Pharmaceutics, 2023, 15(4): 1091.
[54] Sha XY, Shi Q, Liu L, et al. Update on the management of fungal keratitis[J]. Int Ophthalmol, 2021, 41(9): 3249-3256.
[55] Zou HY, Wang HT, Xu BQ, et al. Regenerative cerium oxide nanozymes alleviate oxidative stress for efficient dry eye disease treatment[J]. Regen Biomater, 2022, 9: rbac070. doi:10.1093/rb/rbac070.
[56] Niu PH, Wu YL, Zeng FX, et al. Development of nanodrug-based eye drops with good penetration properties and ROS responsiveness for controllable release to treat fungal keratitis[J]. NPG Asia Mater, 2023, 15: 31. doi:10.1038/s41427-023-00478-9.
[57] Chen HY, Geng XW, Ning QY, et al. Biophilic positive carbon dot exerts antifungal activity and augments corneal permeation for fungal keratitis[J]. Nano Lett, 2024, 24(13): 4044-4053.
[58] 徐霁,周文君,蔡春华,等.聚乙二醇化壳聚糖纳米粒的制备及局部滴眼给药性能评价[J].第三军医大学学报, 2017, 39(13): 1376-1380. XU Ji, ZHOU Wenjun, CAI Chunhua, et al. Preparation and performance of PEGylated chitosan nanoparticles for ocular drug delivery by eye drops[J]. Journal of Third Military Medical University, 2017, 39(13): 1376-1380.
[59] Wong KY, Wong MS, Liu J. Nanozymes for treating ocular diseases[J]. Adv Healthc Mater, 2024: e2401309. doi:10.1002/adhm.202401309.
[1] 谢心怡,张阿敏,郑文宇,宁浩南,闫宪康,马辰晖,李福海. 基于准确病原的儿童大叶性肺炎炎症特点[J]. 山东大学学报 (医学版), 2022, 60(12): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!