您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (5): 16-20.doi: 10.6040/j.issn.1671-7554.0.2024.0136

• 慢性气道疾病的精准个体化诊疗——专家综述 • 上一篇    

线粒体损伤相关分子模式作为慢性阻塞性肺疾病生物标志物的研究进展

申永春1,2,文富强1,2   

  1. 1.四川大学华西医院呼吸与危重症医学科, 四川 成都 610041;2.生物治疗全国重点实验室呼吸病学研究室, 四川 成都 610041
  • 发布日期:2024-05-29
  • 通讯作者: 文富强. E-mail:wenfuqiang@scu.edu.cn
  • 基金资助:
    国家自然科学基金(82170046,81830001,31871157);华西135工程基金(ZYGD230009)

Research progress of mitochondrial damage-associated molecular patterns as biomarkers for chronic obstructive pulmonary disease

SHEN Yongchun1,2, WEN Fuqiang1,2   

  1. 1. Department of Pulmonary and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China;
    2. Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu 610041, Sichuan, China
  • Published:2024-05-29

摘要: 慢性阻塞性肺疾病(简称慢阻肺)发病率、致残率、死亡率高,经济负担沉重,是严重影响国人健康的重大疾病负担。围绕慢阻肺的诊断、评估与死亡风险预测,寻找可靠的生物标志物是目前的研究热点。线粒体损伤相关分子模式与慢阻肺关系密切,基于线粒体损伤相关分子模式有望寻找到慢阻肺的相关生物标志物,为慢阻肺的评估与治疗提供进一步的依据。本文就线粒体损伤相关分子模式在慢阻肺中的生物标志物功能研究进展进行综述。

关键词: 慢性阻塞性肺疾病, 线粒体损伤相关分子模式, 生物标志物

Abstract: Chronic obstructive pulmonary disease(COPD)has high incidence rate, disability rate, mortality rate, and heavy economic burden, and it is a major disease burden that seriously affects the health of Chinese population. Finding reliable biomarkers for the diagnosis, evaluation, and prediction of mortality risk in COPD is currently a research hotspot. The mitochondrial damage-associated molecular patterns are closely related to COPD. Based on mitochondrial damage-associated molecular patterns, it is expected to find relevant biomarkers for COPD, providing further basis for the evaluation and treatment of COPD. This article reviews the research progress of the biomarker role of mitochondrial damage-associated molecular patterns for COPD.

Key words: Chronic obstructive pulmonary disease, Mitochondrial damage-associated molecular patterns, Biomarker

中图分类号: 

  • R562
[1] 王浩, 文富强. 2023年慢性阻塞性肺疾病全球倡议(GOLD)更新解读[J]. 中华结核和呼吸杂志, 2023, 46(5): 543-546. WANG Hao, WEN Fuqiang. Update and interpretation of global initiative for chronic obstructive pulmonary disease(GOLD)in 2023[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2023, 46(5): 543-546.
[2] Wang C, Xu JY, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China(the China Pulmonary Health [CPH] study): a national cross-sectional study[J]. Lancet, 2018, 391(10131): 1706-1717.
[3] Chen SM, Kuhn M, Prettner K, et al. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020-50: a health-augmented macroeconomic modelling study[J]. Lancet Glob Health, 2023, 11(8): e1183-e1193.
[4] 李薇, 杨汀, 王辰. 中国慢性阻塞性肺疾病防治现状及进展[J]. 中国研究型医院, 2020, 7(5): 1-5. LI Wei, YANG Ting, WANG Chen. Present situation and progress of prevention and treatment of chronic obstructive pulmonary disease in China[J]. Journal of Chinese Research Hospitals, 2020, 7(5): 1-5.
[5] Casaburi R, Celli B, Crapo J, et al. The COPD biomarker qualification consortium(CBQC)[J]. COPD, 2013, 10(3): 367-377.
[6] 蔡慧, 黄嘉楠, 金美玲. 慢性阻塞性肺疾病的生命组学研究进展[J]. 中华结核和呼吸杂志, 2019, 42(1): 45-49. CAI Hui, HUANG Jianan, JIN Meiling. Advances in bionomics of chronic obstructive pulmonary disease[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2019, 42(1): 45-49.
[7] 杨麟, 徐明, 贺蓓. 慢性阻塞性肺疾病生物标志物研究进展[J]. 中华结核和呼吸杂志, 2019, 42(4): 290-293. YANG Lin, XU Ming, HE Bei. Research progress on biomarkers of chronic obstructive pulmonary disease[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2019, 42(4): 290-293.
[8] Liu YB, Hong JR, Jiang N, et al. The role of mitochondrial quality control in chronic obstructive pulmonary disease[J]. Lab Invest, 2024, 104(2): 100307. doi:10.1016/j.labinv.2023.100307.
[9] 文富强, 申永春. 基于线粒体动力学的慢性阻塞性肺疾病发病机制与保护策略[J]. 西南医科大学学报, 2022, 45(5): 369-372. WEN Fuqiang, SHEN Yongchun. Pathogenesis and protective strategies of chronic obstructive pulmonary disease based on mitochondrial dynamics[J]. Journal of Southwest Medical University, 2022, 45(5): 369-372.
[10] 赵静, 万绍贵, 鲍登克. 线粒体损伤相关模式分子与宿主免疫调节[J]. 中国生物化学与分子生物学报, 2017, 33(1): 38-43. ZHAO Jing, WAN Shaogui, BAO Dengke. Mitochondrial damage-associated molecular patterns and immune regulation[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(1): 38-43.
[11] Shen YC, Chen L, Chen J, et al. Mitochondrial damage-associated molecular patterns in chronic obstructive pulmonary disease: pathogenetic mechanism and therapeutic target[J]. J Transl Int Med, 2023, 11(4): 330-340.
[12] 甄宁新, 崔巍, 田宝平. 线粒体DNA激活cGAS-STING信号通路促进肺部炎性疾病的研究进展[J]. 中国病理生理杂志, 2022, 38(1): 144-153. ZHEN Ningxin, CUI Wei, TIAN Baoping. Progress of mitochondrial DNA promoting airway inflammatory diseases via cGAS-STING signaling pathway[J]. Chinese Journal of Pathophysiology, 2022, 38(1): 144-153.
[13] Li X, Wang T, Shen Y. The role of circulating mitochondrial DNA in modulating airway inflammation of chronic obstructive pulmonary disease [J]. Eur Respir J, 2014, 44(Suppl 58): P3858.
[14] Zhang WZ, Hoffman KL, Schiffer KT, et al. Association of plasma mitochondrial DNA with COPD severity and progression in the SPIROMICS cohort[J]. Respir Res, 2021, 22(1): 126. doi:10.1186/s12931-021-01707-x.
[15] Zhang WZ, Rice MC, Hoffman KL, et al. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort[J]. JCI Insight, 2020, 5(3): e133984. doi:10.1172/jci.insight.133984.
[16] Ware SA, Kliment CR, Giordano L, et al. Cell-free DNA levels associate with COPD exacerbations and mortality[J]. Respir Res, 2024, 25(1): 42. doi:10.1186/s12931-023-02658-1.
[17] Pelleg A, Schulman ES, Barnes PJ. Extracellular adenosine 5'-triphosphate in obstructive airway diseases[J]. Chest, 2016, 150(4): 908-915.
[18] Lommatzsch M, Cicko S, Müller T, et al. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2010, 181(9): 928-934.
[19] Hlap ci c I, Hulina-Tomaškovi c A, Somborac-Ba cura A, et al. Extracellular adenosine triphosphate is associated with airflow limitation severity and symptoms burden in patients with chronic obstructive pulmonary disease[J]. Sci Rep, 2019, 9(1): 15349. doi:10.1038/s41598-019-51855-w.
[20] Hlap ci c I, Belamari c D, Bosnar M, et al. Combination of systemic inflammatory biomarkers in assessment of chronic obstructive pulmonary disease: diagnostic performance and identification of networks and clusters[J]. Diagnostics, 2020, 10(12): 1029. doi:10.3390/diagnostics10121029.
[21] Zhang X, Li D, Wang H, et al. Elevated plasma cytochrome c levels in patients with chronic obstructive pulmonary disease [J]. Current Science, 2016, 10: 1532-1535. doi: 10.18520/cs/v110/i8/1532-1535.
[22] 张佑扬, 朱述阳, 朱洁晨, 等. 血清细胞色素C可作为慢性阻塞性肺疾病细胞损伤凋亡的生物标志物[J]. 临床肺科杂志, 2022, 27(11): 1696-1701. ZHANG Youyang, ZHU Shuyang, ZHU Jiechen, et al. Cytochrome C can be used as a biomarker of cellular damage and apoptosis in chronic obstructive pulmonary disease[J]. Journal of Clinical Pulmonary Medicine, 2022, 27(11): 1696-1701.
[23] 李孟颖, 王振刚, 刘爽, 等. 琥珀酸:对能量稳态调节具有多效功能的代谢物[J]. 生命科学, 2023, 35(9): 1128-1135. LI Mengying, WANG Zhengang, LIU Shuang, et al. Succinate: a pleiotropic metabolite in energy homeostasis[J]. Chinese Bulletin of Life Sciences, 2023, 35(9): 1128-1135.
[24] Wang C, Li JX, Tang D, et al. Metabolic changes of different high-resolution computed tomography phenotypes of COPD after budesonide-formoterol treatment[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12: 3511-3521. doi:10.2147/COPD.S152134.
[25] Sangiorgi C, Vallese D, Gnemmi I, et al. HSP60 activity on human bronchial epithelial cells[J]. Int J Immunopathol Pharmacol, 2017, 30(4): 333-340.
[26] Ou GC, Zhu MM, Huang YF, et al. HSP60 regulates the cigarette smoke-induced activation of TLR4-NF-κB-MyD88 signalling pathway and NLRP3 inflammasome[J]. Int Immunopharmacol, 2022, 103: 108445. doi:10.1016/j.intimp.2021.108445.
[27] An NE, An J, Zeng TT, et al. Research progress of mitochondria in chronic obstructive pulmonary disease: a bibliometric analysis based on the Web of Science Core Collection[J]. J Thorac Dis, 2024, 16(1): 215-230.
[1] 陈映均,刘同刚. 综合生物信息学分析鉴定乙型肝炎病毒相关肝细胞癌中异常甲基化修饰的差异表达基因[J]. 山东大学学报 (医学版), 2023, 61(9): 101-117.
[2] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[3] 修德健,高正文,宋婷婷,崔楠,崔静,孙健平. 生物信息学方法分析与宫颈癌有关联的基因[J]. 山东大学学报 (医学版), 2022, 60(10): 99-109.
[4] 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78.
[5] 张宁,杨燕,李锐,殷运红,李昊,曲仪庆. 慢阻肺患者感染鲍曼不动杆菌危险因素及耐药性分析[J]. 山东大学学报 (医学版), 2019, 57(9): 88-96.
[6] 王传新. 外泌体生物标志物与肿瘤发生发展的研究进展[J]. 山东大学学报 (医学版), 2018, 56(10): 18-23.
[7] 王红阳. 精准医疗时代的肿瘤生物标志物发展[J]. 山东大学学报 (医学版), 2018, 56(10): 1-2.
[8] 于晓琳,张军,杨柳,周林,崔亮亮,张济. 济南市慢性阻塞性肺部疾病患者在流感季呼吸系统疾病的罹患特征[J]. 山东大学学报(医学版), 2017, 55(3): 79-82.
[9] 顾建华,马晓天,李吉庆,薛付忠,王家林. 健康管理队列慢性阻塞性肺疾病风险预测模型[J]. 山东大学学报 (医学版), 2017, 55(12): 62-65.
[10] 潘青,吕志芳. 慢性阻塞性肺疾病新指南对临床患者分类的应用价值[J]. 山东大学学报(医学版), 2016, 54(3): 63-67.
[11] 霍兴兰. 无创呼吸机治疗呼吸衰竭84例的临床观察[J]. 山东大学学报(医学版), 2014, 52(S2): 50-50.
[12] 韦中盛. 纤维支气管镜胸腔内喷洒滑石粉治疗 慢性阻塞性肺疾病合并难治性气胸的临床观察[J]. 山东大学学报(医学版), 2014, 52(S2): 78-79.
[13] 刘晓静. 固本养脏汤对慢性阻塞性肺病急性加重期患者血清CRP、TNF-α、IL-8和肺通气功能的影响[J]. 山东大学学报(医学版), 2014, 52(S1): 61-62.
[14] 李廷天1,邵磊2,翟聪颖1,殷康1,杨艳平1,2 . 慢性阻塞性肺疾病及糖尿病大鼠肺泡灌洗液SIgA的含量测定[J]. 山东大学学报(医学版), 2011, 49(4): 17-.
[15] 吴艳,惠复新,赵寅滢,范晓东,卞涛. 慢性阻塞性肺疾病患者病毒感染状况及与T淋巴细胞免疫功能的关系[J]. 山东大学学报(医学版), 2011, 49(11): 117-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!