您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (8): 86-93.doi: 10.6040/j.issn.1671-7554.0.2022.1021

• 公共卫生与管理学 • 上一篇    

基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系

张娜娜1,2,赵一鸣2,刘新敏2   

  1. 1.湖州市中医院妇科, 浙江 湖州 313000;2.中国中医科学院广安门医院妇科, 北京 100053
  • 发布日期:2023-08-30
  • 通讯作者: 刘新敏. E-mail:beijingliuxm@163.com
  • 基金资助:
    国家自然科学基金(81674011)

Causal relationship between uterine leiomyomas and breast cancer: a two-sample Mendelian randomization study

ZHANG Nana1,2, ZHAO Yiming2, LIU Xinmin2   

  1. 1. Department of Gynaecology, Huzhou Hospital of Chinese Medicine, Huzhou 313000, Zhejiang, China;
    2. Department of Gynecology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
  • Published:2023-08-30

摘要: 目的 探索子宫肌瘤(ULs)与乳腺癌(BC)的因果关系。 方法 采用两样本孟德尔随机化方法,使用公开的来自不同样本的、欧洲人的全基因组关联研究中的遗传数据,以ULs作为暴露,其单核苷酸多态性(SNPs)作为工具变量,BC作为结局变量。另外,对5种分子亚型BC进行亚组分析。运用Cochran的Q统计量检验SNPs的异质性,MR-Egger法检验多效性,逆方差加权、MR-Egger法、加权中位数法和MR-PRESSO法进行因果推断。通过R软件进行数据分析和可视化处理。 结果 最终纳入25个ULs的SNPs;异质性检验提示,部分亚组存在异质性(P<0.01);多效性检验没有发现显著的水平多效性(P>0.05);因果推断结果显示,基因预测的ULs与整体BC间没有因果关系(逆方差加权法:OR=0.98,95%CI:0.86~1.12,P=0.79),与5种亚型BC间也没有发现因果关系(P>0.01)。 结论 没有发现在欧洲人中ULs与整体BC的风险增加有因果关系,也不支持ULs与某一亚型BC有因果关系。

关键词: 子宫肌瘤, 乳腺癌, 分子亚型, 孟德尔随机化, 因果关系

Abstract: Objective To investigate the causal relationship between uterine leiomyomas(ULs)and breast cancer(BC). Methods The study employed a two-sample Mendelian randomization(MR)method, the European genetic data from published genome-wide association study, and ULs as exposure, single nucleotide polymorphisms(SNPs)of ULs as instrumental variables, and BC as outcome variable. In addition, 5 molecular subtypes of BC were analyzed as outcome variables. The heterogeneity of SNPs was determined with Cochrans Q test, and the pleiotropy was determined with MR-egger. Inverse variance weighted(IVW), MR-Egger, weighted median and MR-PRESSO were used to evaluate the causal relationship of ULs with BC. The R software was used for data analysis and visualization processing. Results A total of 25 SNPs of ULs were finally extracted. Cochrans Q test suggested that heterogeneity existed among some subgroups(P<0.01). No pleiotropy was observed(P>0.05). MR analysis showed that there was no causal relationship between ULs predicted by gene and overall BC(IVW: OR=0.98, 95%CI: 0.86-1.12, P=0.79), and there was no causal relationship with 5 molecular subtypes of BC(P>0.01). Conclusion There is no causal relationship between ULs and increased risk of overall BC in Europeans, and no causal relationship between ULs and any molecular subtype of BC.

Key words: Uterine leiomyomas, Breast cancer, Molecular subtype, Mendelian randomization, Causal relationship

中图分类号: 

  • R737.33
[1] Stewart EA, Laughlin-Tommaso SK, Catherino WH, et al. Uterine fibroids [J]. Nat Rev Dis Primers, 2016, 2: 16043. doi:10.1038/nrdp.2016.43.
[2] 子宫肌瘤的诊治中国专家共识专家组. 子宫肌瘤的诊治中国专家共识[J]. 中华妇产科杂志, 2017, 52(12): 793-800. doi: 10.3760/cma.j.issn.0529-567x.2017.12.001.
[3] Stewart EA, Cookson CL, Gandolfo RA, et al. Epidemiology of uterine fibroids: a systematic review [J]. BJOG, 2017, 124(10): 1501-1512.
[4] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[5] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016 [J]. CA, 2016, 66(1): 7-30.
[6] Chan DSM, Norat T. Obesity and breast cancer: not only a risk factor of the disease [J]. Curr Treat Options Oncol, 2015, 16(5): 22. doi: 10.1007/s11864-015-0341-9.
[7] Qin H, Lin ZJ, Vásquez E, et al. Association between obesity and the risk of uterine fibroids: a systematic review and meta-analysis[J]. J Epidemiol Community Health, 2021, 75(2): 197-204.
[8] Lindegård B. Breast cancer among women from Gothenburg with regard to age, mortality and coexisting benign breast disease or leiomyoma uteri [J]. Oncology, 1990, 47(5): 369-375.
[9] Baron JA, Weiderpass E, Newcomb PA, et al. Metabolic disorders and breast cancer risk(United States)[J]. Cancer Causes Control, 2001, 12(10): 875-880.
[10] Wise LA, Radin RG, Rosenberg L, et al. History of uterine leiomyomata and incidence of breast cancer [J]. Cancer Causes Control, 2015, 26(10): 1487-1493.
[11] 王新云, 柯小平, 李莉, 等. 子宫肌瘤患者乳腺癌发生风险流行病学研究[J]. 中国实验诊断学, 2019, 23(4): 610-613. WANG Xinyun, KE Xiaoping, LI Li, et al. Epidemiological study of breast cancer in patients with uterine fibroids [J]. Chinese Journal of Laboratory Diagnosis, 2019, 23(4): 610-613.
[12] Tseng JJ, Chen YH, Chiang HY, et al. Increased risk of breast cancer in women with uterine myoma: a nationwide, population-based, case-control study [J]. J Gynecol Oncol, 2017, 28(3): e35. doi: 10.3802/jgo.2017.28.e35.
[13] Xing P, Li JG, Jin F. A case-control study of reproductive factors associated with subtypes of breast cancer in Northeast China [J]. Med Oncol, 2010, 27(3): 926-931.
[14] Wehby GL, Ohsfeldt RL, Murray JC. ‘Mendelian randomization’ equals instrumental variable analysis with genetic instruments [J]. Stat Med, 2008, 27(15): 2745-2749.
[15] Gupta V, Walia GK, Sachdeva MP. ‘Mendelian randomization’: an approach for exploring causal relations in epidemiology [J]. Public Health, 2017, 145: 113-119. doi: 10.1016/j.puhe.2016.12.033.
[16] Wu XY, Xiao CH, Han ZT, et al. Investigating the shared genetic architecture of uterine leiomyoma and breast cancer: a genome-wide cross-trait analysis [J]. Am J Hum Genet, 2022, 109(7): 1272-1285.
[17] Gallagher CS, Mäkinen N, Harris HR, et al. Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis [J]. Nat Commun, 2019, 10(1): 4857. doi: 10.1038/s41467-019-12536-4.
[18] Zhang HY, Ahearn TU, Lecarpentier J, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses [J]. Nat Genet, 2020, 52(6): 572-581.
[19] Chen HX, Zhang YY, Li SW, et al. The genetic association of polycystic ovary syndrome and the risk of endometrial cancer: a Mendelian randomization study [J]. Front Endocrinol, 2021, 12: 756137. doi: 10.3389/fendo.2021.756137.
[20] 高雪, 薛付忠, 黄丽红, 等. 孟德尔随机化模型及其规范化应用的统计学共识[J]. 中国卫生统计, 2021, 38(3): 471-475, 480. GAO Xue, XUE Fuzhong, HUANG Lihong, et al. Statistical consensus on Mendel randomization model and its standardized application [J]. Chinese Journal of Health Statistics, 2021, 38(3): 471-475, 480.
[21] Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies [J]. Int J Epidemiol, 2011, 40(3): 755-764.
[22] Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians [J]. BMJ, 2018, 362: k601. doi: 10.1136/bmj.k601.
[23] Chen LL, Yang HQ, Li HT, et al. Insights into modifiable risk factors of cholelithiasis: a Mendelian randomization study [J]. Hepatology, 2022, 75(4): 785-796.
[24] Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method [J]. Eur J Epidemiol, 2017, 32(5): 377-389.
[25] Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome [J]. Elife, 2018, 7: e34408. doi: 10.7554/eLife.34408.
[26] Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression [J]. Int J Epidemiol, 2015, 44(2): 512-525.
[27] Nazarzadeh M, Pinho-Gomes AC, Bidel Z, et al. Plasma lipids and risk of aortic valve stenosis: a Mendelian randomization study [J]. Eur Heart J, 2020, 41(40): 3913-3920.
[28] Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted Median estimator [J]. Genet Epidemiol, 2016, 40(4): 304-314.
[29] Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases [J]. Nat Genet, 2018, 50(5): 693-698.
[30] Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations [J]. Bioinformatics, 2019, 35(22): 4851-4853.
[31] Staley JR, Blackshaw J, Kamat MA, et al. PhenoScanner: a database of human genotype-phenotype associations [J]. Bioinformatics, 2016, 32(20): 3207-3209.
[1] 金珊,高杰,谢玉姣,展垚,杜甜甜,王传新. 甲基转移酶PRMT5稳定USP15促进乳腺癌发生发展的作用[J]. 山东大学学报 (医学版), 2023, 61(7): 1-11.
[2] 张天鑫,张婷,黄鑫,韩佳沂,王淑康. 氨基酸与2型糖尿病因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2023, 61(5): 102-107.
[3] 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87.
[4] 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26.
[5] 张红媛,顾永忠. 妊娠早期巨大子宫肌瘤术后分娩1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(1): 69-73.
[6] 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46.
[7] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[8] 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5.
[9] 张凯,司书成,李吉庆,刘晓雯,赵英琪,薛付忠. 睡眠性状与肠易激综合征的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2022, 60(8): 109-114.
[10] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29.
[11] 周亚杰,王斐,于理想,余之刚. 女性乳腺癌保乳手术决策相关因素[J]. 山东大学学报 (医学版), 2022, 60(12): 1-6.
[12] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[13] 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139.
[14] 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118.
[15] 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!