您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (7): 40-46.doi: 10.6040/j.issn.1671-7554.0.2023.0120

• 基础医学 • 上一篇    

CCKAR与下游效应器融合蛋白的偏向性信号通路探讨

何永浩1,2,肖鹏2,王艺璟2,张道来1   

  1. 1.滨州医学院药学院, 山东 烟台 264003;2.山东大学基础医学院, 山东 济南 250012
  • 发布日期:2023-07-04
  • 通讯作者: 张道来. E-mail:dlzhang@bzmc.edu.cn
  • 基金资助:
    国家自然科学基金(81901548);山东省自然科学基金(ZR2019BC078)

Exploration of the biased signaling pathway of the fusion protein of CCKAR and downstream effector

HE Yonghao1,2, XIAO Peng2, WANG Yijing2, ZHANG Daolai1   

  1. 1. School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China;
    2. Department of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China
  • Published:2023-07-04

摘要: 目的 探讨胆囊收缩素A受体(CCKAR)的偏向性信号通路,设计治疗糖尿病的特异性药物,为其他G蛋白偶联受体(GPCR)偏向性信号通路的研究提供新思路。 方法 构建受体与Gα亚单位(Gs、Gq)或者β-arrestin-1之间的融合蛋白,研究其偏向性信号通路。在确保融合蛋白能够正常表达的前提下,采用环磷酸腺苷(cAMP)累积实验检测细胞在硫化缩胆囊素八肽(CCK-8s)刺激后细胞内cAMP含量的变化;采用钙成像技术检测细胞在CCK-8s刺激后细胞内钙离子的变化;采用免疫印迹技术检测细胞在CCK-8s刺激后细胞外调节蛋白激酶(pERK)和Bcl-2死亡启动子(pBad)的磷酸化情况。 结果 融合蛋白质粒(CCKAR-Gs/Gq/β-arrestin-1)能够在HEK293细胞系中稳定表达;CCKAR-Gs融合蛋白可以产生高的cAMP信号,非融合蛋白CCKAR产生低的cAMP信号,而CCKAR-Gq/β-arrestin-1不引起cAMP信号;CCKAR-Gq具有更强的钙离子信号;CCKAR-β-arrestin-1具有特异的信号偏向性,显著提升下游ERK蛋白和Bad蛋白的磷酸化水平。 结论 人工构建的CCKAR融合蛋白能够有效、偏向性地激活CCKAR的下游信号通路,可以选择性地行使不同信号通路调控的生理功能。

关键词: 胆囊收缩素A受体, 融合蛋白, Gs, Gq, β-arrestin-1, 硫化缩胆囊素八肽

Abstract: Objective To explore the biased signaling pathway of cholecystokinin A receptor(CCKAR), in order to design specific drugs for the treatment of diabetes, and to provide new ideas for the study of other G protein-coupled receptor(GPCR)biased signaling pathways. Methods The fusion proteins between the receptor and Gα subunit or β-arrestin-1 were constructed to study their biased signaling pathways. Under the premise of normal expression of fusion proteins, the cAMP accumulation assay was used to detect the change of intracellular cAMP content after the stimulation of sulfated cholecystokinin fragment 26-33 amide(CCK-8s). Calcium imaging technique was used to detect the change of intracellular calcium ion after the stimulation of CCK-8s. Western blotting was used to detect the phosphorylation of extracellular regulated protein kinase(pERK)and Bcl-2 death promoter(pBad)after the stimulation of CCK-8s. Results CCKAR-Gs/Gq/β-arrestin-1 was stably expressed in HEK293 cells; CCKAR-Gs produced a high cAMP signal; CCKAR produced a low cAMP signal; CCKAR-Gq/β-arrestin-1 did not cause cAMP signal. CCKAR-Gq had stronger calcium signal than CCKAR-Gq. CCKAR-β-arrestin-1 had a specific signal bias and significantly increased the phosphorylation level of the downstream ERK and Bad proteins. Conclusion The artificial CCKAR fusion protein can effectively and preferentially activate the downstream signaling pathways of CCKAR, and selectively perform physiological functions regulated by different signaling pathways.

Key words: Cholecystokinin A receptor, Fusion protein, Gs, Gq, β-arrestin-1, Sulfated cholecystokinin fragment 26-33 amide

中图分类号: 

  • R918
[1] Mafi A, Kim SK, Goddard WA 3rd. The mechanism for ligand activation of the GPCR-G protein complex [J]. Proc Natl Acad Sci U S A, 2022, 119(18): e2110085119.
[2] Chaudhary PK, Kim S. An insight into GPCR and G-proteins as cancer drivers [J]. Cells, 2021, 10(12): 3288.
[3] Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes [J]. Nat Struct Mol Biol, 2018, 25(1): 4-12.
[4] Wang W, Qiao Y, Li Z. New insights into Modes of GPCR activation [J]. Trends Pharmacol Sci, 2018, 39(4): 367-386.
[5] Gurevich EV, Tesmer JJ, Mushegian A, et al. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs [J]. Pharmacol Ther, 2012, 133(1): 40-69.
[6] Gurevich VV, Gurevich EV. The molecular acrobatics of arrestin activation [J]. Trends Pharmacol Sci, 2004, 25(2): 105-111.
[7] Xiao K, McClatchy DB, Shukla AK, et al. Functional specialization of beta-arrestin interactions revealed by proteomic analysis [J]. Proc Natl Acad Sci USA, 2007, 104(29): 12011-12016.
[8] Boussi L, Frishman WH. β-Arrestin as a therapeutic target in heart failure [J]. Cardiol Rev, 2021, 29(5): 223-229.
[9] Peterson YK, Luttrell LM. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling [J]. Pharmacol Rev, 2017, 69(3): 256-297.
[10] Ma L, Pei G. Beta-arrestin signaling and regulation of transcription [J]. J Cell Sci, 2007, 120(Pt 2): 213-218.
[11] Wang J, Hua T, Liu ZJ. Structural features of activated GPCR signaling complexes [J]. Curr Opin Struct Biol, 2020, 63: 82-89. doi: 10.1016/j.sbi.2020.04.008.
[12] Slosky LM, Caron MG, Barak LS. Biased allosteric modulators: new frontiers in GPCR drug discovery [J]. Trends Pharmacol Sci, 2021, 42(4): 283-299.
[13] 赵承奇, 尚军, 邢鲁艳. 糖尿病治疗药物研究进展[J]. 人民军医, 2019, 62(8): 768-773.
[14] Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future [J]. Lancet, 2014, 383(9922): 1068-1083.
[15] Ahrén B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes [J]. Nat Rev Drug Discov, 2009, 8(5): 369-385.
[16] Nauck MA, Quast DR, Wefers J, et al. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art [J]. Mol Metab, 2021, 46: 101102. doi:10.1016/j.mo/met.2020.101102.
[17] Ning SL, Zheng WS, Su J, et al. Different downstream signalling of CCK1 receptors regulates distinct functions of CCK in pancreatic beta cells [J]. Br J Pharmacol, 2015, 172(21): 5050-5067.
[18] Strachan RT, Sun JP, Rominger DH, et al. Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor(GPCR)[J]. J Biol Chem, 2014, 289(20): 14211-14224.
[19] Rajagopal S, Ahn S, Rominger DH, et al. Quantifying ligand bias at seven-transmembrane receptors [J]. Mol Pharmacol, 2011, 80(3): 367-377.
[20] Onaran HO, Costa T. Where have all the active receptor states gone? [J]. Nat Chem Biol, 2012, 8(8): 674-677.
[21] Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus [J]. Nat Rev Endocrinol, 2012, 8(12): 728-742.
[22] Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions [J]. Drug Discov Today, 2015, 20(1): 122-128.
[23] Tinoco AB, Valenciano AI, Gómez-Boronat M, et al. Two cholecystokinin receptor subtypes are identified in goldfish, being the CCKAR involved in the regulation of intestinal motility[J]. Comp Biochem Physiol A Mol Integr Physiol, 2015, 187:193-201. doi:10.1016/j.cbpa.2015.05.027.
[24] Wang HH, Portincasa P, Wang DQ. Update on the molecular mechanisms underlying the effect of cholecystokinin and cholecystokinin-1 receptor on the formation of cholesterol gallstones[J]. Curr Med Chem, 2019, 26(19):3407-3423.
[25] Chandra R, Liddle RA. Cholecystokinin[J]. Curr Opin Endocrinol Diabetes Obes, 2007, 14(1):63-67.
[26] Ma KT, Si JQ, Zhang ZQ, et al. Modulatory effect of CCK-8S on GABA-induced depolarization from rat dorsal root ganglion[J]. Brain Res, 2006, 1121(1):66-75.
[27] Ahrén B, Holst JJ, Efendic S. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes[J]. J Clin Endocrinol Metab, 2000, 85(3): 1043-1048.
[28] Hauser AS, Attwood MM, Rask-Andersen M, et al. Trends in GPCR drug discovery: new agents, targets and indications[J]. Nat Rev Drug Discov, 2017, 16(12):829-842.
[29] Liu Q, Yang D, Zhuang Y, et al. Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor[J]. Nat Chem Biol, 2021, 17(12):1238-1244.
[1] 马传顺,林慧,孙金鹏,张道来. GPCR-G蛋白融合传感器检测GPCR与G蛋白相互作用的灵敏度[J]. 山东大学学报 (医学版), 2022, 60(9): 85-90.
[2] 陈攀,蒋春霞,雷艺. 2型糖尿病患者外周血突触融合蛋白8表达与慢性炎症、糖脂代谢的相关性[J]. 山东大学学报 (医学版), 2018, 56(12): 26-32.
[3] 漆苏, 陈蕊, 漆学良. 以突眼、眼球胀痛为主要表现的GQ1b抗体阳性Miller-Fisher综合征1例[J]. 山东大学学报(医学版), 2015, 53(5): 95-96.
[4] 王昌1,李丽2,董彩莉3,刘承1,王坤1,刘海南1,范医东1. Xp11.2易位相关性肾细胞癌的临床特点[J]. 山东大学学报(医学版), 2013, 51(7): 79-83.
[5] 沈涛1,代炜2,李妍3,许晓军1,巴根1,付勤1. 骨肉瘤细胞中SORBS1的表达和定位[J]. 山东大学学报(医学版), 2012, 50(2): 21-.
[6] 朱月婷1,焦玉莲2,崔彬2,张捷2,游力2,赵跃然1,2. 人sBAFF-DT388融合蛋白在大肠杆菌中的表达及其活性研究[J]. 山东大学学报(医学版), 2011, 49(7): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!