山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (7): 40-46.doi: 10.6040/j.issn.1671-7554.0.2023.0120
• 基础医学 • 上一篇
何永浩1,2,肖鹏2,王艺璟2,张道来1
HE Yonghao1,2, XIAO Peng2, WANG Yijing2, ZHANG Daolai1
摘要: 目的 探讨胆囊收缩素A受体(CCKAR)的偏向性信号通路,设计治疗糖尿病的特异性药物,为其他G蛋白偶联受体(GPCR)偏向性信号通路的研究提供新思路。 方法 构建受体与Gα亚单位(Gs、Gq)或者β-arrestin-1之间的融合蛋白,研究其偏向性信号通路。在确保融合蛋白能够正常表达的前提下,采用环磷酸腺苷(cAMP)累积实验检测细胞在硫化缩胆囊素八肽(CCK-8s)刺激后细胞内cAMP含量的变化;采用钙成像技术检测细胞在CCK-8s刺激后细胞内钙离子的变化;采用免疫印迹技术检测细胞在CCK-8s刺激后细胞外调节蛋白激酶(pERK)和Bcl-2死亡启动子(pBad)的磷酸化情况。 结果 融合蛋白质粒(CCKAR-Gs/Gq/β-arrestin-1)能够在HEK293细胞系中稳定表达;CCKAR-Gs融合蛋白可以产生高的cAMP信号,非融合蛋白CCKAR产生低的cAMP信号,而CCKAR-Gq/β-arrestin-1不引起cAMP信号;CCKAR-Gq具有更强的钙离子信号;CCKAR-β-arrestin-1具有特异的信号偏向性,显著提升下游ERK蛋白和Bad蛋白的磷酸化水平。 结论 人工构建的CCKAR融合蛋白能够有效、偏向性地激活CCKAR的下游信号通路,可以选择性地行使不同信号通路调控的生理功能。
中图分类号:
[1] Mafi A, Kim SK, Goddard WA 3rd. The mechanism for ligand activation of the GPCR-G protein complex [J]. Proc Natl Acad Sci U S A, 2022, 119(18): e2110085119. [2] Chaudhary PK, Kim S. An insight into GPCR and G-proteins as cancer drivers [J]. Cells, 2021, 10(12): 3288. [3] Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes [J]. Nat Struct Mol Biol, 2018, 25(1): 4-12. [4] Wang W, Qiao Y, Li Z. New insights into Modes of GPCR activation [J]. Trends Pharmacol Sci, 2018, 39(4): 367-386. [5] Gurevich EV, Tesmer JJ, Mushegian A, et al. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs [J]. Pharmacol Ther, 2012, 133(1): 40-69. [6] Gurevich VV, Gurevich EV. The molecular acrobatics of arrestin activation [J]. Trends Pharmacol Sci, 2004, 25(2): 105-111. [7] Xiao K, McClatchy DB, Shukla AK, et al. Functional specialization of beta-arrestin interactions revealed by proteomic analysis [J]. Proc Natl Acad Sci USA, 2007, 104(29): 12011-12016. [8] Boussi L, Frishman WH. β-Arrestin as a therapeutic target in heart failure [J]. Cardiol Rev, 2021, 29(5): 223-229. [9] Peterson YK, Luttrell LM. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling [J]. Pharmacol Rev, 2017, 69(3): 256-297. [10] Ma L, Pei G. Beta-arrestin signaling and regulation of transcription [J]. J Cell Sci, 2007, 120(Pt 2): 213-218. [11] Wang J, Hua T, Liu ZJ. Structural features of activated GPCR signaling complexes [J]. Curr Opin Struct Biol, 2020, 63: 82-89. doi: 10.1016/j.sbi.2020.04.008. [12] Slosky LM, Caron MG, Barak LS. Biased allosteric modulators: new frontiers in GPCR drug discovery [J]. Trends Pharmacol Sci, 2021, 42(4): 283-299. [13] 赵承奇, 尚军, 邢鲁艳. 糖尿病治疗药物研究进展[J]. 人民军医, 2019, 62(8): 768-773. [14] Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future [J]. Lancet, 2014, 383(9922): 1068-1083. [15] Ahrén B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes [J]. Nat Rev Drug Discov, 2009, 8(5): 369-385. [16] Nauck MA, Quast DR, Wefers J, et al. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art [J]. Mol Metab, 2021, 46: 101102. doi:10.1016/j.mo/met.2020.101102. [17] Ning SL, Zheng WS, Su J, et al. Different downstream signalling of CCK1 receptors regulates distinct functions of CCK in pancreatic beta cells [J]. Br J Pharmacol, 2015, 172(21): 5050-5067. [18] Strachan RT, Sun JP, Rominger DH, et al. Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor(GPCR)[J]. J Biol Chem, 2014, 289(20): 14211-14224. [19] Rajagopal S, Ahn S, Rominger DH, et al. Quantifying ligand bias at seven-transmembrane receptors [J]. Mol Pharmacol, 2011, 80(3): 367-377. [20] Onaran HO, Costa T. Where have all the active receptor states gone? [J]. Nat Chem Biol, 2012, 8(8): 674-677. [21] Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus [J]. Nat Rev Endocrinol, 2012, 8(12): 728-742. [22] Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions [J]. Drug Discov Today, 2015, 20(1): 122-128. [23] Tinoco AB, Valenciano AI, Gómez-Boronat M, et al. Two cholecystokinin receptor subtypes are identified in goldfish, being the CCKAR involved in the regulation of intestinal motility[J]. Comp Biochem Physiol A Mol Integr Physiol, 2015, 187:193-201. doi:10.1016/j.cbpa.2015.05.027. [24] Wang HH, Portincasa P, Wang DQ. Update on the molecular mechanisms underlying the effect of cholecystokinin and cholecystokinin-1 receptor on the formation of cholesterol gallstones[J]. Curr Med Chem, 2019, 26(19):3407-3423. [25] Chandra R, Liddle RA. Cholecystokinin[J]. Curr Opin Endocrinol Diabetes Obes, 2007, 14(1):63-67. [26] Ma KT, Si JQ, Zhang ZQ, et al. Modulatory effect of CCK-8S on GABA-induced depolarization from rat dorsal root ganglion[J]. Brain Res, 2006, 1121(1):66-75. [27] Ahrén B, Holst JJ, Efendic S. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes[J]. J Clin Endocrinol Metab, 2000, 85(3): 1043-1048. [28] Hauser AS, Attwood MM, Rask-Andersen M, et al. Trends in GPCR drug discovery: new agents, targets and indications[J]. Nat Rev Drug Discov, 2017, 16(12):829-842. [29] Liu Q, Yang D, Zhuang Y, et al. Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor[J]. Nat Chem Biol, 2021, 17(12):1238-1244. |
[1] | 马传顺,林慧,孙金鹏,张道来. GPCR-G蛋白融合传感器检测GPCR与G蛋白相互作用的灵敏度[J]. 山东大学学报 (医学版), 2022, 60(9): 85-90. |
[2] | 陈攀,蒋春霞,雷艺. 2型糖尿病患者外周血突触融合蛋白8表达与慢性炎症、糖脂代谢的相关性[J]. 山东大学学报 (医学版), 2018, 56(12): 26-32. |
[3] | 漆苏, 陈蕊, 漆学良. 以突眼、眼球胀痛为主要表现的GQ1b抗体阳性Miller-Fisher综合征1例[J]. 山东大学学报(医学版), 2015, 53(5): 95-96. |
[4] | 王昌1,李丽2,董彩莉3,刘承1,王坤1,刘海南1,范医东1. Xp11.2易位相关性肾细胞癌的临床特点[J]. 山东大学学报(医学版), 2013, 51(7): 79-83. |
[5] | 沈涛1,代炜2,李妍3,许晓军1,巴根1,付勤1. 骨肉瘤细胞中SORBS1的表达和定位[J]. 山东大学学报(医学版), 2012, 50(2): 21-. |
[6] | 朱月婷1,焦玉莲2,崔彬2,张捷2,游力2,赵跃然1,2. 人sBAFF-DT388融合蛋白在大肠杆菌中的表达及其活性研究[J]. 山东大学学报(医学版), 2011, 49(7): 48-52. |
|