山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (5): 1-10.doi: 10.6040/j.issn.1671-7554.0.2023.0001
• 基础医学 •
何静1,严如根2,武志红3,李长忠4,5
HE Jing1, YAN Rugen2, WU Zhihong3, LI Changzhong4,5
摘要: 目的 探讨消癥抑癌方对人卵巢癌细胞SKOV3增殖和迁移的影响及潜在作用机制。 方法 利用网络药理学分析消癥抑癌方抗卵巢癌的关键活性成分和核心靶点,并通过基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析筛选其相关生物学过程和通路。制备消癥抑癌方含药血清,用含药血清处理卵巢癌SKOV3细胞。采用CCK-8法和EdU染色法检测消癥抑癌方含药血清对SKOV3细胞增殖的影响;采用划痕实验和Transwell迁移实验检测消癥抑癌方含药血清对SKOV3细胞迁移的影响;采用Western blotting法检测消癥抑癌方含药血清对SKOV3细胞自噬蛋白(P62)、自噬相关蛋白3(ATG3)、微管相关蛋白1轻链3 B(LC3B)及腺苷酸活化蛋白激酶(AMPK)/蛋白激酶B(AKT)/哺乳动物雷帕霉素靶蛋白(mTOR)通路相关蛋白的影响。 结果 网络药理学研究显示,消癥抑癌方抗卵巢癌的关键活性成分是槲皮素、山柰酚、木犀草素、汉黄芩素、柚皮素等,核心靶点是MAPK3、AKT1、SRC、MAPK1、TP53等。KEGG富集分析共得到171条通路(P<0.01),其中Degree值排名较靠前且与卵巢癌相关的通路主要涉及癌症通路、PI3K-AKT通路、MAPK通路、AMPK通路、自噬、mTOR通路等。体外实验结果表明,与对照组相比,10%和20%含药血清组SKOV3细胞存活率和EdU阳性细胞率均降低(P<0.001),细胞迁移率下降(P<0.001),迁移细胞数也减少(P<0.01或P<0.001)。Western blotting结果表明,10%和20%含药血清干预后,P62、ATG3、LC3B-Ⅱ蛋白表达水平均上调(P<0.05或P<0.01或P<0.001),p-AMPK/AMPK的表达水平上调(P<0.001),p-AKT/AKT和p-mTOR/mTOR的表达水平降低(P<0.05或P<0.01)。 结论 消癥抑癌方抑制卵巢癌SKOV3细胞的增殖和迁移,其作用机制可能与调控AMPK/AKT/mTOR通路,进而阻断自噬流有关。
中图分类号:
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] Permuth-Wey J, Sellers TA. Epidemiology of ovarian cancer [J]. Methods Mol Biol, 2009, 472: 413-437. doi: 10.1007/978-1-60327-492-0_20. [3] Haldar K, Gaitskell K, Bryant A, et al. Epidermal growth factor receptor blockers for the treatment of ovarian cancer [J]. Cochrane Database Syst Rev, 2009(4): CD007927. doi: 10.1002/14651858.cd007927.pub2. [4] Xiang Y, Guo Z, Zhu P, et al. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science [J]. Cancer Med, 2019, 8(5): 1958-1975. [5] 张静, 高冬冬. 扶正生髓汤对卵巢癌术后化疗减毒增效作用及机制研究[J]. 中华中医药学刊, 2019, 37(9): 2242-2245. ZHANG Jing, GAO Dongdong. Toxicity reducing and efficacy enhancing and mechanism research of Fuzheng Shengsui decoction in treatement of ovarian cancer postoperative patients after chemotherapy [J]. Chinese Journal of Traditional Chinese Medicine, 2019, 37(9): 2242-2245. [6] 谢辉, 陈四明, 刘仁榷, 等. 健脾解毒消癌方治疗晚期卵巢癌30例临床观察[J]. 湖南中医杂志, 2022, 38(6): 12-15. XIE Hui, CHEN Siming, LIU Renque, et al. Clinical effect of Jianpi Jiedu Xiaoai prescription in treatment of advanced ovarian cancer: an analysis of 30 cases [J]. Hunan Journal of Traditional Chinese Medicine, 2022, 38(6): 12-15. [7] Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines [J]. J Cheminform, 2014, 6: 13. doi:10.1186/1758-2946-6-13. [8] Kim S, Chen J, Cheng TJ, et al. PubChem in 2021: new data content and improved web interfaces [J]. Nucleic Acids Res, 2021, 49(1): 1388-1395. [9] Daina A, Michielin O, Zoete V. SwissTarge-tPrediction: updated data and new features for efficient prediction of protein targets of small molecules [J]. Nucleic Acids-Res, 2019, 47(1): 357-364. [10] Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses [J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. doi: 10.1002/cpbi.5. [11] Amberger JS, Bocchini CA, Schiettecatte F, et al. OMIM.org: Online Mendelian Inheritance in Man(OMIM®), an online catalog of human genes and genetic disorders [J]. Nucleic Acids Res, 2015, 43(1): 789-798. [12] Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customiza-ble protein-protein networks, and functional characterization of user-uploaded gene/measurement sets [J]. Nucleic Acids Res, 2021, 49(1): 605-612. [13] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J]. Nat Protoc, 2009, 4(1): 44-57. [14] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists [J]. Nucleic Acids Res, 2009, 37(1): 1-13. [15] Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human [J]. J Basic Clin Pharm, 2016, 7(2): 27-31. [16] Li K, You F, Zhang Q, et al. Chemical and biological evidence of the efficacy of Shengxian Decoction for treating human lung adenocarcinoma [J]. Front Oncol, 2022, 12: 849579. doi: 10.3389/fonc.2022.849579. [17] 杨霖, 王笑民, 杨国旺, 等. “虚、痰、瘀、毒”在卵巢癌发生发展及转移过程中的理论探讨[J]. 时珍国医国药, 2018, 29(8): 1951-1952. YANG Lin, WANG Xiaomin, YANG Guowang, et al. Theoretical discussion of "deficiency, phlegm, stasis and poison" in the process of occurrence, development and metastasis of ovarian cancer [J]. Lishizhen Medicine and Materia Medica Research, 2018, 29(8): 1951-1952. [18] 乔红丽, 侯炜, 李站, 等. 朴炳奎治疗卵巢癌辨证思路及用药规律总结[J]. 北京中医药, 2014, 33(10): 735-738. QIAO Hongli, HOU Wei, LI Zhan, et al. Summary of syndrome differentiation and medication rules of Piao Bingkui in the treatment of ovarian cancer [J]. Beijing Journal of Traditional Chinese Medicine, 2014, 33(10): 735-738. [19] 陈聪. 中药单体槲皮素通过抑制LSD1干预上皮性卵巢癌侵袭的机制研究[D]. 南京: 南京中医药大学, 2017. [20] Gao Y, Yin J, Rankin GO, et al. Kaempferol induces G2/M cell cycle arrest via checkpoint kinase 2 and promotes apoptosis vi-a death receptors in human ovarian carcinoma A2780/CP70 cells [J]. Molecules, 2018, 23(5): E1095. [21] 易均路, 侯科名, 陈蓉. 木犀草素对人卵巢癌SKOV3细胞增殖与凋亡的影响[J]. 中药新药与临床药理, 2020, 31(2): 125-133. YI Junlu, HOU Keming, CHEN Rong. Effects of luteolin on proliferation and apoptosis of human ovarian cancer cell line SKOV3 [J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2020, 31(2): 125-133. [22] Ruibin J, Bo J, Danying W, et al. Therapy effects of wogonin on ovarian cancer cells [J]. Biomed Res Int, 2017, 2017: 9381513. doi: 10.1155/2017/9381513. [23] Lin C, Zeng Z, Lin Y, et al. Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota [J]. Phytomedicine, 2022, 106: 154401. doi: 10.1016/j.phymed.2022.154401. [24] Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer [J]. Mol Cancer, 2020, 19(1): 12. [25] Maulucci G, Chiarpotto M, Papi M, et al. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates [J]. Autophagy, 2015, 11(10): 1905-1916. [26] Kabeya Y, Mizushima N, Ueno T, et al. L-C3, a mammalian homologue of yeast Apg-8p, is localized in autophagosome membranes after processing [J]. EMBO J, 2000, 19(21): 5720-5728. [27] Yoshii SR, Mizushima N. Monitoring and measuring autophagy [J]. Int J Mol Sci, 2017, 18(9): E1865. [28] Mihaylova MM, Shaw RJ. The AMPK sign-alling pathway coordinates cell growth, autophagy and metabolism [J]. Nat Cell Biol, 2011, 13(9): 1016-1023. [29] Jung CH, Ro SH, Cao J, et al. mTOR regulation of autophagy [J]. FEBS Lett, 2010, 584(7): 1287-1295. [30] Yu L, McPhee CK, Zheng L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR [J]. Nature, 2010, 465(7300): 942-946. [31] Gao LK, Wang Z, Lu DH, et al. Paeonol i-nduces cytoprotective autophagy via blockiqng the Akt/mTOR pathway in ovarian cancer cells [J]. Cell Death Dis, 2019, 10(8): 609. [32] Fan X, Xie M, Zhao F, et al. Daphnetin tr-iggers ROS-induced cell death and induces cytoprotective autophagy by modulating th-e AMPK/Akt/mTOR pathway in ovarian cancer [J]. Phytomedicine, 2021, 82: 153465. doi: 10.1016/j.phymed.2021.153465. |
[1] | 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-. |
[2] | 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87. |
[3] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[4] | 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84. |
[5] | 张艺馨,赵玉立,封丽. 超声特征及术前CA-125联合对51例卵巢交界性及Ⅰ期恶性肿瘤的鉴别诊断[J]. 山东大学学报 (医学版), 2022, 60(7): 104-109. |
[6] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[7] | 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37. |
[8] | 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26. |
[9] | 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120. |
[10] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[11] | 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154. |
[12] | 哈春芳,李茹月. 卵巢癌耐药机制与靶向治疗策略的研究进展[J]. 山东大学学报 (医学版), 2021, 59(9): 117-123. |
[13] | 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110. |
[14] | 陈君宇, 曹冬焱. 以脑梗为首发的卵巢癌病例报告[J]. 山东大学学报 (医学版), 2021, 59(5): 110-112. |
[15] | 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89. |
|