山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (4): 78-83.doi: 10.6040/j.issn.1671-7554.0.2019.1345
• • 上一篇
蔡秋景,张倩,何学佳,孙文丽,郭爱丽,张楠,朱薇薇
CAI Qiujing, ZHANG Qian, HE Xuejia, SUN Wenli, GUO Aili, ZHANG Nan, ZHU Weiwei
摘要: 目的 探究小鼠气道平滑肌细胞表达与分泌白细胞介素(IL)-33参与哮喘的信号机制。 方法 观察不同浓度[0 ng/mL(空白)、1 ng/mL、10 ng/mL、100 ng/mL]TGF-β1组对小鼠气道平滑肌细胞分泌表达IL-33的影响,ELISA法检测各组细胞培养上清液中IL-33的浓度,Western blotting检测各组细胞IL-33的蛋白表达量;观察加入TGF-β1/Smad3信号通路阻断剂(SIS3)后对该过程的抑制作用,分为空白组、预处理TGF-β1组、未预处理SIS3组和预处理SIS3组,ELISA法检测各组细胞培养上清中IL-33浓度,Western blotting检测各组Smad3、pSmad3及IL-33蛋白表达量。 结果 ELISA结果表明,空白组、1 ng/mL TGF-β1组、10 ng/mL TGF-β1组和100 ng/mL TGF-β1组的细胞上清IL-33浓度的总体差异有统计学意义(F=106.4,P<0.05);与空白组相比,10 ng/mL TGF-β1组、100 ng/mL TGF-β1组IL-33浓度均不同程度升高(P均<0.008 3);10 ng/mL TGF-β1组IL-33浓度高于1 ng/mL TGF-β1组和100 ng/mL TGF-β1组,差异有统计学意义(P<0.008 3),10 ng/mL TGF-β1组IL-33浓度升高最显著。Western blotting 结果表明,空白组、1 ng/mL TGF-β1组、10 ng/mL TGF-β1组和100 ng/mL TGF-β1组细胞内IL-33表达量的总体差异有统计学意义(F=1613.0,P<0.05),各组间差异有统计学意义(P<0.008 3),10 ng/mL TGF-β1组IL-33胞内表达量升高最显著。空白组、预处理TGF-β1组、未预处理SIS3组和预处理SIS3组的细胞上清IL-33浓度的总体差异有统计学意义(F=166.7,P<0.05),与空白组相比,预处理TGF-β1组、未预处理SIS3组、预处理SIS3组IL-33浓度均不同程度升高(P<0.05)。空白组、预处理TGF-β1组、未预处理SIS3组和预处理SIS3组的胞内Smad3、pSmad3、IL-33蛋白表达量的总体差异有统计学意义[(F=4 752.0,P<0.05),(F=4 330.0,P<0.05),(F=2 791.0,P<0.05)];与空白组相比,预处理TGF-β1组、预处理SIS3组中Smad3蛋白、pSmad3蛋白、IL-33蛋白表达均不同程度升高(P<0.05),未预处理SIS3组Smad3蛋白、pSmad3蛋白、IL-33蛋白表达均降低(P<0.05)。 结论 一定浓度的TGF-β1可刺激小鼠气道平滑肌细胞表达分泌IL-33增多,TGF-β1/Smad3信号通路可调节该过程参与哮喘。
中图分类号:
[1] Castro-Rodriguez JA, Saglani S, Rodriguez-Martinez CE, et al. The relationship between inflammation and remodeling in childhood asthma: a systematic review[J]. Pediatr Pulmonol, 2018, 53(6): 824-835. [2] James AL, Elliot JG, Jones RL, et al. Airway smooth muscle hypertrophy and hyperplasia in asthma[J]. Am J Respir Crit Care Med, 2012, 185(10): 1058-1064. [3] Salter B, Pray C, Radford K, et al. Regulation of human airway smooth muscle cell migration and relevance to asthma[J]. Respir Res, 2017, 18(1): 156. doi: 10.1186/s12931-017-0640-8. [4] Royce SG, Cheng V, Samuel CS. The regulation of fibrosis in airway remodeling in asthma[J]. Mol Cell Endocrinol, 2012, 351(2): 167-175. [5] Yoshida K, Murata M, Yamaguchi T, et al. TGF-β/Smad signaling during hepatic fibro-carcinogenesis(review)[J]. Int J Oncol, 2014, 45(4): 1363-1371. [6] Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease[J]. Immunol Rev, 2017, 278(1): 173-184. [7] Cayrol C, Girard JP. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy[J]. Curr Opin Immunol, 2014, 31: 31-37. doi: 10.1016/j.coi.2014.09.004. [8] Préfontaine D, Lajoie-Kadoch S, Foley S, et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells[J]. J Immunol, 2009, 183(8): 5094-5103. [9] 舒萍.免疫调节剂对小儿哮喘的治疗应用综述[J]. 中国药物经济学, 2016,11(10):19-21. [10] Estrada RD, Ownby DR. Rural asthma: current understanding of prevalence, patterns, and interventions for children and adolescents[J]. Curr Allergy Asthma Rep, 2017, 17(6): 37. doi: 10.1007/s11882-017-0704-3. [11] James Alan. Airway remodeling in asthma: is it fixed or variable?[J]. Am J Respir Crit Care Med, 2017, 195(8): 968-970. [12] 阳志华, 莫碧文. 气道平滑肌细胞在哮喘中的作用研究进展[J]. 世界最新医学信息文摘, 2018, 18(6):70-80,83. YANG Zhihua, MO Biwen. Role of airway smooth muscle cells in asthma mechanisms[J]. World Latest Medicine Information(Electronic Versioin), 2018,18(6):70-80,83. [13] Kwak HJ, Park DW, Seo JY, et al. The Wnt/β-catenin signaling pathway regulates the development of airway remodeling in patients with asthma[J]. Exp Mol Med, 2015, 47: e198. doi: 10.1038/emm.2015.91. [14] Johansson K, McSorley HJ. Interleukin-33 in the developing lung-Roles in asthma and infection.[J]. Pediatric Allergy Immunol, 2019, 30(5): 503-510. [15] Cayrol C, Girard JP. Interleukin-33(IL-33): a nuclear cytokine from the IL-1 family[J]. Immunol Rev, 2018, 281(1): 154-168. [16] Gabryelska A, Kuna P, Antczak A, et al. IL-33 mediated inflammation in chronic respiratory diseases-understanding the role of the member of IL-1 superfamily[J]. Front Immunol, 2019, 10: 692. doi: 10.3389/fimmu.2019.00692. [17] Gupta RK, Gupta K, Dwivedi PD. Pathophysiology of IL-33 and IL-17 in allergic disorders[J]. Cytokine Growth Factor Rev, 2017, 38: 22-36. doi: 10.1016/j.cytogfr.2017.09.005. [18] 刘力维, 赵霞. TGF-β1/Smad信号通路与哮喘气道重塑的关系及研究进展[J]. 辽宁中医杂志, 2015,42(9): 1811-1813. LIU Liwei, ZHAO Xia. Relation between TGF-β/Smadand airway remodeling in asthma and its research progress[J]. Liaoning Journal of Traditional Chinese Medicine, 2015,42(9): 1811-1813. [19] 沈豪, 郭霜, 刘秀芬, 等. TGF-β/Smads信号通路在姜黄素改善糖尿病大鼠心肌纤维化中的作用[J]. 中国药理学通报,2018,34(4): 522-527. SHEN Hao, GUO Shuang, LIU Xiufen, et al. Curcumin ameliorates myocardial fibrosis via TGF-β/Smads signaling pathway in diabetic rats[J]. Chinese Pharmacological Bulletin, 2018,34(4): 522-527. [20] Chen M, Huang L, Zhang W, et al. MiR-23b controls TGF-β1 induced airway smooth muscle cell proliferation via TGFβR2/p-Smad3 signals[J]. Mol Immunol, 2016, 70: 84-93. doi: 10.1016/j.molimm.2015.12.012. [21] 田彦, 崔红生, 张鑫. 三步序贯法对激素依赖型哮喘患者TGF-β1/Smad信号通路及肺功能的影响[J]. 中华中医药杂志, 2019,34(9): 4413-4416. TIAN Yan, CUI Hongsheng, ZHANG Xin. Influence of three-stage sequential therapy on TGF-β1/Smad signaling pathway and lung function of steroid-dependent asthma patients[J]. CJTCMP, 2019,34(9): 4413-4416. [22] 张云珍, 方海燕, 余红, 等. 白藜芦醇抑制TGF-β1/Smad3信号通路对人肺上皮细胞A549 EMT调控的影响及机制[J]. 广东医学,2019,40(15):2130-2134. ZHANG Yunzhen, FANG Haiyan, YU Hong, et al. Study of the effects and the mechanisms of resveratrol on the regulation of human pulmonary epithelial cell A549 by inhibiting TGF-β1/Smad3 signaling pathway[J]. Guangdong Medical Journal, 2019,40(15):2130-2134. [23] 蔡亮鸣, 叶慧清, 杨丽芬, 等. TGF-β_1上调Smad3磷酸化对气道上皮细胞表达胸腺基质淋巴细胞生成素的促进作用及其机制[J]. 解放军医学杂志,2019,44(4):281-286. CAI Liangming, YE Huiqing, YANG Lifen, et al. Auxo action and mechanism of TGF-β1 up-regulating Smad3 phosphorylation on the expression of thymic stromal lymphopoietin in human bronchial epithelia[J]. Medical Journal of Chinese Peoples Liberation Army, 2019,44(4):281-286. [24] Da C, Liu Y, Zhan Y, et al. Nobiletin inhibits epithelial-mesenchymal transition of human non-small cell lung cancer cells by antagonizing the TGF-β1/Smad3 signaling pathway[J]. Oncol Rep, 2016, 35(5): 2767-2774. [25] 何金婷, 莽靖, 董玥, 等. C-Jun氨基末端激酶与Activin A/Smads通路在体外脑缺血损伤中的相互作用[J]. 中国实验诊断学, 2019, 23(8): 1408-1412. HE Jinting, MANG Jing, DONG Yue, et al. Interactions between C-Jun B-terminal kinase and Activin A/Smads signal in cerebral ischemic injury in vitro[J]. Chinese Journal of Laboratory Diagnosis, 2019, 23(8): 1408-1412. |
[1] | 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18. |
[2] | 杜娇娇,庄向华,陈诗鸿,王雪萌,姜冬青,吴菲,韩晓琳,华梦羽,宋玉文. 绝经后骨质疏松症患者血清IL-31、IL-33表达变化[J]. 山东大学学报 (医学版), 2021, 59(6): 45-50. |
[3] | 刘晓菲,梁瀛,张丛溪,王娟,潘云,徐嘉蔚,常春,董亮. 92例哮喘患者血清瘦素与诱导痰嗜酸性粒细胞的关系[J]. 山东大学学报 (医学版), 2020, 1(9): 27-33. |
[4] | 杨丽萍,慕婷婷,杨玉娟,张宇,宋西成. 吸入性变应原对腺样体肥大合并支气管哮喘患儿肺功能影响[J]. 山东大学学报 (医学版), 2020, 58(3): 107-112. |
[5] | 李岩,牛瑞,王超超. 122例哮喘患者舒张试验结果分析[J]. 山东大学学报 (医学版), 2020, 58(11): 81-84. |
[6] | 王海霞,李一章,白晨晓,姜迪,王丽雯,陈欧. 克拉霉素辅助治疗哮喘疗效及安全性的Meta分析[J]. 山东大学学报 (医学版), 2019, 57(11): 27-33. |
[7] | 陈欧,李国勇,刘爱红,朱晓波,陈少杰,王一彪. 网络药理学预测麻黄治疗哮喘的抗炎作用机制[J]. 山东大学学报 (医学版), 2019, 57(1): 55-61. |
[8] | 宫晓丹,赵方正,曹可,邓鹏辉,张才擎. 肌球蛋白轻链激酶对哮喘小鼠气道炎症及肺功能的影响[J]. 山东大学学报 (医学版), 2017, 55(12): 18-23. |
[9] | 柳晓涓,丁荔洁,康凤玲,周苗,薛付忠. 健康管理人群支气管哮喘风险预测模型[J]. 山东大学学报 (医学版), 2017, 55(12): 56-61. |
[10] | 刘清发,王超,孙启晶,宫晓丹,张才擎. IL-25通过nuocyte细胞诱导哮喘小鼠气道重塑[J]. 山东大学学报(医学版), 2016, 54(8): 28-33. |
[11] | 刘琳,刘春红,王得翔,吴金香,赵继萍,刘甜,张元元,王俊飞,柳亚慧,曹柳兆,董亮. 应用呼出气一氧化氮联合脉冲振荡肺功能评估哮喘患者的小气道功能[J]. 山东大学学报(医学版), 2016, 54(8): 78-83. |
[12] | 吴宏图, 丁娴, 张磊, 曹兴丽, 王峥艳, 单春明, 刘平. 儿童咳嗽变异性哮喘FeNO、hs-CRP及 IgE水平变化及意义[J]. 山东大学学报(医学版), 2014, 52(S2): 82-83. |
[13] | 黄艳, 旷昕, 熊花, 刘鑫, 罗晓青, 刘斌. 柴朴汤调控VEGF、TGF-β1的表达对哮喘大鼠气道重塑的影响[J]. 山东大学学报(医学版), 2014, 52(S1): 14-17. |
[14] | 李燕, 谢敏, 史小玲, 王晓燕, 唐利, 钟森, 陈庄. HSP70/CD80 DNA疫苗通过调节Th1/Th2/Treg/Th17细胞对小鼠急性哮喘的抑制作用[J]. 山东大学学报(医学版), 2014, 52(10): 20-24. |
[15] | 张倩1,2,钱粉红3,周林福4,韦国桢1,柏建岭5,殷凯生4,施毅2. TLR7/8基因多态性与江苏省汉族人群哮喘发病风险及严重度的关系[J]. 山东大学学报(医学版), 2013, 51(2): 93-98. |
|