山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (4): 71-77.doi: 10.6040/j.issn.1671-7554.0.2019.1458
• 基础医学 • 上一篇
王冉冉,朱天瑞,张凤,王敏,闵傲雪,李恒,李晓红
WANG Ranran, ZHU Tianrui, ZHANG Feng, WANG Min, MIN Aoxue, LI Heng, LI Xiaohong
摘要: 目的 研究长期淫羊藿苷(ICA)治疗对阿尔茨海默病(AD)模型APP/PS1转基因小鼠认知功能、病理改变和神经炎症的影响,并探讨其中的作用机制。 方法 Morris水迷宫试验检测ICA对小鼠学习记忆和空间认知能力的影响;免疫组织化学染色法检测ICA对小鼠海马区β淀粉样蛋白(Aβ)沉积、胶质细胞激活、炎性因子生成的影响;Western blotting法测定炎性信号反应通路NF-κB相关通路蛋白表达水平的变化。 结果 (1)ICA可以减少APP/PS1小鼠逃避潜伏期(F第4天=4.96,P=0.017;F第5天=9.37,P=0.001),增加目标象限停留时间(F=9.31,P=0.001);(2)ICA可以减少APP/PS1小鼠海马区Aβ沉积(FAβarea=153.28,P<0.001;FAβ IOD=87.18,P<0.001);(3)ICA可以抑制APP/PS1小鼠神经细胞标记物GFAP和Iba-1的表达(FGFAP=370.16,P<0.001;FIba-1=32.11,P<0.001)以及促炎性细胞因子白介素-1β(IL-1β)的生成(F=190.10,P<0.001);(4)ICA可以降低APP/PS1小鼠NF-κB通路蛋白p-p65/p65比值(F=338.77,P<0.001)。 结论 长期淫羊藿苷治疗可以通过抑制脑内胶质细胞激活,减少促炎因子生成和海马区Aβ沉积,改善APP/PS1小鼠认知功能。
中图分类号:
[1] Frost GR, Jonas LA, Li YM. Friend, foe or both? immune activity in Alzheimers disease [J]. Front Aging Neurosci, 2019, 11: 337. doi: 10.3389/fnagi.2019.00337. [2] Rajendran L, Paolicelli RC. Microglia-mediated synapse loss in Alzheimers disease [J]. Neuro Sci, 2018, 38(12): 2911-2919. [3] Tublin JM, Adelstein JM, Del Monte F, et al. Getting to the heart of Alzheimer disease [J]. Circ Res, 2019,124(1):142-149. [4] Griciuc A, Patel S, Federico AN, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer's disease [J]. Neuron, 2019, 1039(5): 820-835. [5] Van der Kant R, Goldstein LSB, Ossenkoppele R. Amyloid-beta-independent regulators of tau pathology in Alzheimer disease [J]. Nat Rev Neurosci, 2020, 21(1): 21-35. [6] Sarlus H, Heneka MT. Microglia in Alzheimers disease [J]. J Clin Invest, 2017, 127(9): 3240-3249. [7] Wu B, Feng JY, Yu LM, et al. Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage [J]. Br J Pharmacol, 2018,175(21): 4137-4153. [8] Niculescu AB, Le-Niculescu H, Roseberry K, et al. Blood biomarkers for memory: toward early detection of risk for Alzheimer disease, pharmacogenomics, and repurposed drugs [J]. Mol Psychiatry, 2019. doi: 10.1038/s41380-019-0602-2. [9] Zhang L, Shen C, Chu J, et al. Icariin decreases the expression of APP and BACE-1 and reduces the β-amyloid burden in an APP transgenic mouse model of Alzheimers disease [J]. Int J Biol Sci, 2014, 10(2): 181-191. [10] Zhu T, Zhang F, Li H, et al. Long-term icariin treatment ameliorates cognitive deficits via CD4+T cell-mediated immuno-inflammatory responses in APP/PS1 mice [J]. Clin Interv Aging, 2019, 14: 817-826. doi: 10.2147/CIA.S208068. [11] Wang Y, Zhu T, Wang M, et al. Icariin attenuates M1 activation of microglia and Aβ plaque accumulation in the hippocampus and prefrontal Cortex by up-regulating PPARγ in restraint/isolation-stressed APP/PS1 mice [J]. Front Neuro Sci, 2019, 13: 291. doi: 10.3389/fnins.2019.00291. [12] Lopez-Picon FR, Snellman A, Eskola O, et al. Neuroinflammation appears early on PET imaging and then plateaus in a mouse model of Alzheimer disease [J]. J Nucl Med, 2018, 59(3): 509-515. [13] Joshi G, Gan KA, Johnson DA, et al. Increased Alzheimer's disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy [J]. Neuro Biol Aging, 2015, 36(2): 664-679. [14] Jin WS, Shen LL, Bu XL, et al. Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model [J]. Acta Neuro Pathol, 2017, 134(2): 207-220. [15] Li F, Zhang Y, Lu X, et al. Icariin improves the cognitive function of APP/PS1 mice via suppressing endoplasmic reticulum stress [J]. Life Sci, 2019, 234: 116739. doi: 10.1016/j.lfs.2019.116739. [16] Finneran DJ, Nash KR. Neuroinflammation and fractalkine signaling in Alzheimers disease [J]. J Neuroinflammation, 2019, 16(1): 30. [17] Hemonnot AL, Hua J, Ulmann L, et al. Microglia in Alzheimer disease: well-known targets and new opportunities [J]. Front Aging Neurosci, 2019, 11: 233. doi10.3389/fnagi.2019.00233. [18] Ulland TK, Colonna M. TREM2-a key player in microglial biology and Alzheimer disease [J]. Nat Rev Neurol, 2018,14(11): 667-675. [19] 方力群, 王亚楠, 高红梅, 等. 姜黄素对阿尔茨海默病模型小鼠脑内胶质细胞介导的炎症反应的抑制作用[J]. 国际神经病学神经外科学杂志, 2017, 44(4): 347-351. FANG Liqun, WANG Yanan, GAO Hongmei, et al. Inhibitory effect of curcumin on glial cell-mediated inflammation in a mouse model of Alzheimers disease [J]. Journal of International Neurology and Neurosurgery, 2017, 44(4): 347-351. [20] Zhang YY, Fan YC, Wang M, et al. Atorvastatin attenuates the production of IL-1β, IL-6, and TNF-α in the hippocampus of an amyloid β1-42-induced rat model of Alzheimers disease [J]. Clin Interv Aging, 2013, 8: 103-110. doi: 10.2147/CIA.S40405. [21] Liu J, Liu L, Sun J, et al. Icariin protects hippocampal neurons from endoplasmic reticulum stress and NF-κB mediated apoptosis in fetal rat hippocampal neurons and asthma rats [J]. Front Pharmacol, 2020, 10: 1660. doi: 10.3389/fphar.2019.01660. [22] Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimers disease [J]. Pharmacol Res, 2018, 129: 262-273. doi: 10.1016/j.phrs.2017.11.030. [23] Ham HJ, Han JH, Lee YS, et al. Bee venom soluble phospholipase A2 exerts neuroprotective effects in a lipopolysaccharide-induced mouse model of Alzheimers disease via inhibition of nuclear factor-kappa B [J]. Front Aging Neurosci, 2019, 11: 287. doi: 10.3389/fnagi.2019.00287. [24] 刘昌雄, 黄雄杰, 肖湘君, 等. 淫羊藿苷对大鼠皮瓣缺血再灌注损伤后炎症反应的抑制作用[J]. 中国临床药理学杂志, 2019, 35(6): 532-535. LIU Changxiong, HUANG Xiongjie, XIAO Xiangjun, et al. Inhibits effect of icariin on the inflammatory response after ischemia-reperfusion injury of rat skin flap [J]. The Chinese Journal of Clinical Pharmacology, 2019, 35(6): 532-535. [25] Mi B, Wang J, Liu Y, et al. Icariin activates autophagy via down-regulation of the NF-κB signaling-mediated apoptosis in chondrocytes [J]. Front Pharmacol, 2018, 9: 605. doi: 10.3389/fphar.2018.00605. [26] Tejera D, Mercan D, Sanchez-Caro JM, et al. Systemic inflammation impairs microglial Aβclearance through NLRP3 inflammasome [J]. EMBO J, 2019, 38(17): e101064. doi: 10.15252/embj.2018101064 |
[1] | 闫鹏 王蓉 杜怡峰 沈伦乾. 老年性痴呆患者尿中AD7c-NTP含量的研究[J]. 山东大学学报(医学版), 2209, 47(6): 106-. |
[2] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[3] | 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23. |
[4] | 张莉,周悦芳,王珊珊,吴旭艺,梁晓敏,闫晓丽,范培红. 火麻花和火麻仁化学成分研究[J]. 山东大学学报 (医学版), 2018, 56(9): 17-22. |
[5] | 李蒙蒙,王苗苗,刁雪琴,田克立,徐霞,任桂杰. 阿尔茨海默病细胞模型中lncRNA RP11-543N12.1对CDH13表达的调控作用[J]. 山东大学学报(医学版), 2017, 55(3): 12-18. |
[6] | 唐毅. 阿尔茨海默病诊断标准:从临床诊断到病理生理诊断[J]. 山东大学学报(医学版), 2017, 55(10): 14-20. |
[7] | 杜蘅,袁晓东. 阿尔茨海默病病因及发病机制研究进展[J]. 山东大学学报(医学版), 2017, 55(10): 21-27. |
[8] | 仇成轩, 杜怡峰. 重视阿尔茨海默病和老年痴呆症的人群干预研究[J]. 山东大学学报(医学版), 2017, 55(10): 1-6. |
[9] | 杜怡峰,井然. 阿尔茨海默病的诊断与治疗[J]. 山东大学学报(医学版), 2017, 55(10): 7-13. |
[10] | 李懋禹,唐诗,杜怡峰. TRB3在APP/PS1转基因小鼠脑内的表达及其意义[J]. 山东大学学报(医学版), 2016, 54(10): 1-5. |
[11] | 李梅, 孟庆慧, 蔡巧英, 徐雁, 范晓婷. 乙酰葛根素对Aβ25-35诱导BV-2小胶质细胞Caspase-3表达的影响[J]. 山东大学学报(医学版), 2015, 53(10): 32-36. |
[12] | 赵雪莲, 于君, 谢兆宏, 曹彦军, 刘震, 王晓, 徐琳琳, 杨慧, 郑晓磊, 沈阳, 毕建忠. 线粒体自噬在阿尔茨海默病细胞模型中的作用机制[J]. 山东大学学报(医学版), 2015, 53(10): 1-5. |
[13] | 葛树建, 林炜炜, 丛琳, 张涛, 韩晓娟, 张清华, 杜怡峰. 基于Web构建山东省阿尔茨海默病临床数据库[J]. 山东大学学报(医学版), 2015, 53(10): 42-45. |
[14] | 王金红, 李文涛, 于树田, 董丽. 多奈哌齐对阿尔茨海默病模型大鼠下丘脑-垂体-肾上腺轴的影响[J]. 山东大学学报(医学版), 2014, 52(7): 11-15. |
[15] | 钱冰,吕春娥,田晓康,高殿帅,刘志安. 钙调蛋白依赖性蛋白激酶Ⅱ在AD样大鼠海马的表达及其与细胞凋亡的关系[J]. 山东大学学报(医学版), 2014, 52(2): 44-47. |
|