您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (10): 46-50.doi: 10.6040/j.issn.1671-7554.0.2018.1035

• • 上一篇    

数字PCR在肿瘤诊疗中的应用进展

关明,张心菊   

  1. 复旦大学附属华山医院中心实验室, 上海 200040
  • 收稿日期:2018-09-04 发布日期:2022-09-27
  • 通讯作者: 关明. E-mail:guanming88@yahoo.com
  • 基金资助:
    国家自然科学基金(81672105)

Applications of digital PCR in cancer detection and treatment

GUAN Ming, ZHANG Xinju   

  1. Department of Central Laboratory, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
  • Received:2018-09-04 Published:2022-09-27

摘要: 数字PCR是一种新兴的核酸检测技术,具有灵敏度高、可定量分析的特点。基于数字PCR的液态活检,可用于极微量核酸样本及稀有突变位点的检测,尤其适用于肿瘤治疗过程中需多次反复取样的情况,实现动态监测,为肿瘤诊断、复发提供及时的基因信息。

关键词: 数字PCR, 液态活检, 基因检测, 绝对定量, 肿瘤

Abstract: Digital PCR is a novel technique that facilitates the absolute quantitation of nucleic acid targets with high sensitivity. Digital PCR combined with liquid biopsies can be used in the detection of infinitesimal nucleic acid samples and rare mutations. It is particularly suitable for cancer patients who need repeated sampling. Digital PCR can provide adequate gene information in cancer diagnosis and relapse monitoring.

Key words: Digital PCR, Liquid biopsy, Genetic testing, Absolute quantitation, Cancer

中图分类号: 

  • R73-34
[1] Perkins G, Lu H, Garlan F, et al. Droplet-based digital PCR: application in cancer research[J]. Adv Clin Chem, 2017, 79: 43-91. doi: 10.1016/bs.acc.2016.10.001. Epub 2016 Dec 27.
[2] Alikian M, Gale RP, Apperley JF, et al. Molecular techniques for the personalised management of patients with chronic myeloid leukaemia[J]. Biomol Detect Quantif, 2017, 11: 4-20. doi: 10.1016/j.bdq.2017.01.001. eCollection 2017 Mar.
[3] Yanagita M, Redig AJ, Paweletz CP, et al. A prospective evaluation of circulating tumor cells and cell-free DNA in EGFR-mutant non-small cell lung cancer patients treated with erlotinib on a phase II trial[J]. Clin Cancer Res, 2016, 22(24): 6010-6020.
[4] Hindson CM, Chevillet JR, Briggs HA, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR[J]. Nat Methods, 2013, 10(10): 1003-1005.
[5] 王晨, 李艳明, 方向东. 肿瘤液态活检的研究进展及其临床应用[J]. 遗传, 2017, 39(3): 220-231. WANG Chen, LI Yanming, FANG Xiangdong. Research progress on liquid biopsy in oncology and its clinical applications[J]. Hereditas, 2017, 39(3): 220-231.
[6] Chen WW, Balaj L, Liau LM, et al. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles[J]. Mol Ther Nucleic Acids, 2013, 2: e109. doi:10.1038/mtna.2013.28
[7] Birkenkamp-Demtroder K, Nordentoft I, Christensen E, et al. Genomic alterations in liquid biopsies from patients with bladder cancer[J]. Eur Urol, 2016, 70(1): 75-82.
[8] Li N, Ma J, Guarnera MA, et al. Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer[J]. J Cancer Res Clin Oncol, 2014, 140(1): 145-150.
[9] Takahama T, Sakai K, Takeda M, et al. Detection of the T790M mutation of EGFR in plasma of advanced non-small cell lung cancer patients with acquired resistance to tyrosine kinase inhibitors(West Japan oncology group 8014LTR study)[J]. Oncotarget, 2016, 7(36): 58492-58499.
[10] Diehl F, Schmidt K, Durkee KH, et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients[J]. Gastroenterology, 2008, 135(2): 489-498.
[11] Waterhouse M, Follo M, Pfeifer D, et al. Sensitive and accurate quantification of JAK2 V617F mutation in chronic myeloproliferative neoplasms by droplet digital PCR[J]. Ann Hematol, 2016, 95(5): 739-744.
[12] Shen J, Liao J, Guarnera MA, et al. Analysis of MicroRNAs in sputum to improve computed tomography for lung cancer diagnosis[J]. J Thorac Oncol, 2014, 9(1): 33-40.
[13] Dodd DW, Gagnon KT, Corey DR. Digital quantitation of potential therapeutic target RNAs[J]. Nucleic Acid Ther, 2013, 23(3): 188-194.
[14] Ettinger DS, Wood DE, Akerley W, et al. Non-small cell lung cancer, version 6.2015[J]. J Natl Compr Canc Netw, 2015, 13(5): 515-524.
[15] Lee JY, Qing X, Xiumin W, et al. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: korean lung cancer consortium(KLCC-12-02)[J]. Oncotarget, 2016, 7(6): 6984-6993.
[16] Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer[J]. N Engl J Med, 2004, 351(4): 337-345.
[17] Benson AR, Venook AP, Cederquist L, et al. Colon cancer, version 1.2017, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2017, 15(3): 370-398.
[18] Laurent-Puig P, Pekin D, Normand C, et al. Clinical relevance of KRAS-mutated subclones detected with picodroplet digital PCR in advanced colorectal cancer treated with anti-EGFR therapy[J]. Clin Cancer Res, 2015, 21(5): 1087-1097.
[19] 张心菊, 关明. 高分辨熔解曲线分析在肿瘤分子检测中的应用[J]. 中华检验医学杂志, 2017,40(2): 80-83. ZHANG Xinjü, GUAN Ming. High-resolution melting analysis: applications in cancer detection[J]. Chinese Journal of Laboratory Medicine, 2017, 40(2): 80-83.
[20] Barault L, Amatu A, Bleeker FE, et al. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer[J]. Ann Oncol, 2015, 26(9): 1994-1999.
[21] Leto SM, Trusolino L. Primary and acquired resistance to EGFR-targeted therapies in colorectal cancer: impact on future treatment strategies[J]. J Mol Med(Berl), 2014, 92(7): 709-722.
[22] Bettoni F, Masotti C, Habr-Gama A, et al. Intratumoral genetic heterogeneity in rectal cancer: are single biopsies representative of the entirety of the tumor?[J]. Ann Surg, 2017, 265(1): e4-e6.
[23] Wang Z, Chen R, Wang S, et al. Quantification and dynamic monitoring of EGFR T790M in plasma cell-free DNA by digital PCR for prognosis of EGFR-TKI treatment in advanced NSCLC[J]. PLoS One, 2014, 9(11): e110780. doi: 10.1371/journal.pone.0110780. eCollection 2014.
[24] Guttery DS, Page K, Hills A, et al. Noninvasive detection of activating estrogen receptor 1(ESR1)mutations in estrogen receptor-positive metastatic breast cancer[J]. Clin Chem, 2015, 61(7): 974-982.
[25] Goh HG, Lin M, Fukushima T, et al. Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay[J]. Leuk Lymphoma, 2011, 52(5): 896-904.
[26] 谭正兰. miR-221促进N-myc表达对神经母细胞瘤增殖的作用与机制研究[D]. 重庆: 重庆医科大学, 2016.
[27] Kurihara S, Ueda Y, Onitake Y, et al. Circulating free DNA as non-invasive diagnostic biomarker for childhood solid tumors[J]. J Pediatr Surg, 2015, 50(12): 2094-2097.
[28] Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients[J]. Nat Rev Cancer, 2011, 11(6): 426-437.
[29] Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide[J]. J Pathol, 1999, 189(1): 12-19.
[30] Durst M, Hoyer H, Altgassen C, et al. Prognostic value of HPV-mRNA in sentinel lymph nodes of cervical cancer patients with pN0-status[J]. Oncotarget, 2015, 6(26): 23015-23025.
[31] Carow K, Read C, Hafner N, et al. A comparative study of digital PCR and real-time qPCR for the detection and quantification of HPV mRNA in sentinel lymph nodes of cervical cancer patients[J]. BMC Res Notes, 2017, 10(1): 532.
[32] Guibert N, Pradines A, Farella M, et al. Monitoring KRAS mutations in circulating DNA and tumor cells using digital droplet PCR during treatment of KRAS-mutated lung adenocarcinoma[J]. Lung Cancer, 2016, 100: 1-4. doi:10.1016/j.lungcan.2016.07.021.
[33] Olmedillas-Lopez S, Garcia-Arranz M, Garcia-Olmo D. Current and Emerging Applications of Droplet Digital PCR in Oncology[J]. Mol Diagn Ther, 2017, 21(5): 493-510.
[1] 王伟 王沂峰 张岭梅 林琼燕 黄菊. 人卵巢癌OVCAR3细胞系中侧群细胞的分离及其成瘤性、侵袭性的实验研究[J]. 山东大学学报(医学版), 2209, 47(6): 8-11.
[2] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[3] 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61.
[4] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[5] 黄方 康瑞 吴春林. VEGFC、NF-κBp65及Survivin在鼻咽癌中的表达及临床意义[J]. 山东大学学报(医学版), 2209, 47(6): 83-.
[6] 孙文雄,吴日超,郑贤静,李丽, 张友忠. 宫颈血管周上皮样细胞肿瘤1例[J]. 山东大学学报 (医学版), 2022, 60(9): 125-128.
[7] 吴瑞芳,李长忠. 女性生育力保护的现状与进展[J]. 山东大学学报 (医学版), 2022, 60(9): 1-7.
[8] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[9] 王陆敏,周士英,黄启坤,刘艳丽. DNAH5基因新发突变致原发性纤毛运动障碍1例[J]. 山东大学学报 (医学版), 2022, 60(8): 103-108.
[10] 张艺馨,赵玉立,封丽. 超声特征及术前CA-125联合对51例卵巢交界性及Ⅰ期恶性肿瘤的鉴别诊断[J]. 山东大学学报 (医学版), 2022, 60(7): 104-109.
[11] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[12] 宋钰峰,宁豪,姚志刚,吴海虎,刘非凡,吕家驹. 肾上腺海绵状血管瘤临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(2): 37-42.
[13] 程传龙,杨淑霞,佘凯丽,房启迪,韩闯,刘盈,崔峰,李秀君. 淄博市2018年恶性肿瘤的流行特征及影响因素[J]. 山东大学学报 (医学版), 2022, 60(2): 102-108.
[14] 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120.
[15] 陈峰,高沛,朱可嘉,丁森泰. 膀胱淋巴上皮瘤样癌1例[J]. 山东大学学报 (医学版), 2022, 60(1): 118-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!