您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (1): 101-108.doi: 10.6040/j.issn.1671-7554.0.2021.0359

• 公共卫生与管理学 • 上一篇    下一篇

基于两种机器学习算法的双相情感障碍患者自杀行为影响因素模型比较研究

姜震,孙静,邹雯,王唱唱,高琦   

  1. 首都医科大学公共卫生学院流行病与卫生统计学教研室, 北京 100069
  • 发布日期:2022-01-08
  • 通讯作者: 高琦. E-mail:gaoqi@ccmu.edu.cn
  • 基金资助:
    国家自然科学基金(81872688)

A comparison study of suicidal behavior predictive models of bipolar disorder patients based on two machine learning algorithms

JIANG Zhen, SUN Jing, ZOU Wen, WANG Changchang, GAO Qi   

  1. Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
  • Published:2022-01-08

摘要: 目的 探索两种算法构建住院双相情感障碍患者自杀行为影响因素模型的特点,比较其分类能力,为住院双相情感障碍患者自杀行为的预防控制提供依据。 方法 利用2010年1月至2017年12月某精神专科医院住院双相情感障碍患者的数据,通过χ2 检验初步筛选自杀行为影响因素,采用Adaboost、二分类Logistic回归两种算法构建自杀行为影响因素模型,再用查全率、查准率和F1值比较不同模型特点。 结果 研究共纳入住院双相情感障碍患者7 782例,有自杀行为的患者1 661例,自杀行为率为21%。与Logistic回归模型相比,Adaboost模型分类能力较强且稳定。自杀行为影响因素中,诊断分型和既往自杀史在两模型中均占据重要地位。 结论 两种算法构建的双相情感障碍患者自杀行为影响因素模型,总体分类能力差别较小,需进一步挖掘潜在变量以提升模型分类能力。诊断分型为当前抑郁发作或混合发作、有既往自杀史的双相情感障碍患者是自杀行为的高危人群,应针对该特征加强自杀行为的预防工作。

关键词: 机器学习, 自杀行为, 影响模型, 双相情感障碍, Adaboost, Logistic回归

Abstract: Objective To explore the characteristics of two machine learning algorithms in the construction of suicidal behavior predictive models for bipolar disorder inpatients, and to compare their performance so as to provide a basis for the prevention and control of suicidal behavior of inpatients with bipolar disorder. Methods Clinical data of bipolar disorder inpatients treated during Jan. 2010 and Dec. 2017 were retrospectively analyzed. After the influencing factors of suicidal behavior were screened with Chi-square test analysis, Adaboost and binary Logistic regression were used to construct two suicidal behavior classification models. The characteristics of the two models were compared with recall ratio, precision ratio and F1 value. Results A total of 7,782 bipolar disorder inpatients were enrolled, among whom 1,661 had suicidal ideation or attempted suicide and the rate of suicidal behavior was 21%. Between the two models, Adaboost performed better. Diagnosis subtype and past suicide history were the two most important risk factors in both models. Conclusion There are only slight differences between the two models based on different machine learning algorithms, both having a low average performance. More factors are needed to improve the model performance. Current depression episode or mixed state and past suicide history are the most predictive traits for suicidal behavior in bipolar disorder inpatients. Preventive measures should be taken to address suicidal behavior risks accordingly.

Key words: Machine learning, Suicidal behavior, Influening model, Bipolar disorder, Adaboost, Logistic regression

中图分类号: 

  • TP181
[1] 余桂红, 毛越. 加拿大青少年自杀预防教育专业化发展及启示——基于对青少年自杀预防中心(Kids Help Phone)的考察 [J]. 徐州工程学院学报(社会科学版), 2019, 34(2): 100-108. YU Guihong, MAO Yue. Professional development and enlightenment of canadian kids suicide prevention education: a survey on kids help phone [J]. Journal of Xuzhou Institute of Technology(Social Sciences Edition), 2019, 34(2): 100-108.
[2] 邹亚明, 郝元涛. 我国伤害所致死亡损失生命年和经济负担分析 [J]. 中华疾病控制杂志, 2016, 20(5): 495-499. ZOU Yaming, HAO Yuantao. Analysis on years of life lost and economic burden caused by injury in China [J]. Chinese Journal of Disease Control & Prevention, 2016, 20(5): 495-499.
[3] Tietbohl-Santos B, Chiamenti P, Librenza-Garcia D, et al. Risk factors for suicidality in patients with panic disorder: a systematic review and meta-analysis [J]. Neurosci Biobehav Rev, 2019, 105: 34-38. doi: 10.1016/j.neubiorev.2019.07.022.
[4] Dong M, Lu L, Zhang L, et al. Prevalence of suicide attempts in bipolar disorder: a systematic review and meta-analysis of observational studies [J]. Epidemiol Psychiatr Sci, 2019, 29: e63. doi: 10.1017/S2045796019000593.
[5] Pompili M, Gonda X, Serafini G, et al. Epidemiology of suicide in bipolar disorders: a systematic review of the literature [J]. Bipolar Disord, 2013, 15(5): 457-490.
[6] Schaffer A, Isometsä ET, Tondo L, et al. International society for bipolar disorders task force on suicide: meta-analyses and meta-regression of correlates of suicide attempts and suicide deaths in bipolar disorder [J]. Bipolar Disord, 2015, 17(1): 1-16.
[7] Franklin JC, Ribeiro JD, Fox KR, et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research [J]. Psychol Bull, 2017, 143(2): 187-232.
[8] 许侨洋. 基于特征提取的ICU患者死亡风险预测研究[D]. 南京: 南京大学, 2019.
[9] 周阳. 基于机器学习的医疗文本分析挖掘技术研究[D]. 北京: 北京交通大学, 2019.
[10] 高萌, 杨仙鸿, 姜祎群. 人工智能在医学领域的研究进展[J]. 中华皮肤科杂志, 2019, 52(2): 131-134. GAO Meng, YANG Xianhong, JIANG Yiqun. Artificial intelligence in medicine [J]. Chinese Journal of Dermatology, 2019, 52(2): 131-134.
[11] 郑泓, 蒲城城, 王毅, 等. 基于脑结构像的精神分裂症机器学习分类[J]. 心理科学进展, 2020, 28(2): 252-265. ZHENG Hong, PU Chengcheng, WANG Yi, et al. The classification of schizophrenia based on brain structural features: a machine learning approach [J]. Advances in Psychological Science, 2020, 28(2): 252-265.
[12] Kessler RC, Hwang I, Hoffmire CA, et al. Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration [J]. Int J Methods Psychiatr Res, 2017, 26(3): e1575. doi: 10.1002/mpr.1575.
[13] Haroz EE, Walsh CG, Goklish N, et al. Reaching those at highest risk for suicide: development of a model using machine learning methods for use with native American communities [J]. Suicide Life Threat Behav, 2020, 50(2): 422-436.
[14] 赵北庚. 基于R语言adabag包的集成学习建模研究[J]. 信息与电脑(理论版), 2015(5): 106-107. ZHAO Beigeng. Research on ensemble learning modeling based on R language adabag package [J]. Information and Computers(Theory Edition), 2015(5): 106-107.
[15] Gonda X, Pompili M, Serafini G, et al. Suicidal behavior in bipolar disorder: epidemiology, characteristics and major risk factors [J]. J Affect Disord, 2012, 143(1-3): 16-26.
[16] Tidemalm D, Haglund A, Karanti A, et al. Attempted suicide in bipolar disorder: risk factors in a cohort of 6086 patients [J]. PLoS One, 2014, 9(4): e94097. doi: 10.1371/journal.pone.0094097.
[17] Hansson C, Joas E, Pälsson E, et al. Risk factors for suicide in bipolar disorder: a cohort study of 12 850 patients [J]. Acta Psychiatr Scand, 2018, 138(5): 456-463.
[18] Malhi GS, Outhred T, Das P, et al. Modeling suicide in bipolar disorders [J]. Bipolar Disord, 2018, 20(4): 334-348.
[19] Plans L, Barrot C, Nieto E, et al. Association between completed suicide and bipolar disorder: a systematic review of the literature [J]. J Affect Disord, 2019, 242: 111-122. doi: 10.1016/j.jad.2018.08.054.
[20] Isometsä ET. Suicides in mood disorders in psychiatric settings in nordic national register-based studies [J]. Front Psychiatry, 2020, 11: 721. doi: 10.3389/fpsyt.2020.00721.
[21] Pallaskorpi S, Suominen K, Ketokivi M, et al. Incidence and predictors of suicide attempts in bipolar I and II disorders: a 5-year follow-up study [J]. Bipolar Disord, 2017, 19(1): 13-22.
[22] Michaels MS, Balthrop T, Pulido A, et al. Is the higher number of suicide attempts in bipolar disorder vs. major depressive disorder attributable to illness severity? [J]. Arch Suicide Res, 2018, 22(1): 46-56.
[23] Persons JE, Coryell WH, Solomon DA, et al. Mixed state and suicide: Is the effect of mixed state on suicidal behavior more than the sum of its parts? [J]. Bipolar Disord, 2018, 20(1): 35-41.
[24] Tang H, Xiong T, Shi J, et al. Global and reflective rumination are related to suicide attempts among patients experiencing major depressive episodes [J]. BMC Psychiatry, 2021, 21(1): 117.
[25] Tondo L, Lepri B, Baldessarini RJ. Suicidal risks among 2826 Sardinian major affective disorder patients [J]. Acta Psychiatr Scand, 2007, 116(6): 419-428.
[26] 杨贵成, 徐记芳, 赫利寒. 双相情感障碍伴自杀行为的流行病学分析[J]. 中国临床实用医学, 2021, 12(1): 57-60. YANG Guicheng, XU Jifang, HE Lihan. Epidemiological analysis of bipolar disorder with suicidal behavior [J]. China Clinical Practical Medicine, 2021, 12(1): 57-60.
[27] 王煜, 方伟, 王亮, 等. 基于Adaboost-CART模型的动卧列车客座率预测[J]. 中国铁路, 2019, 10: 34-38. WANG Yu, FANG Wei, WANG Liang, et al. Seating Rate Prediction for EMU sleeping Train Based On Adaboost-CART Model [J]. Chinese Railways, 2019, 10: 34-38.
[28] 池亚平, 凌志婷, 王志强, 等. 基于支持向量机与Adaboost的入侵检测系统[J]. 计算机工程, 2019, 45(10): 183-188,202. CHI Yaping, LING Zhiting, WANG Zhiqiang, et al. Intrusion detection system based on support vector machine and adaboost [J]. Computer Engineering, 2019, 45(10): 183-188,202.
[29] 李振铠, 刘小杰, 郝良元, 等. 基于AdaBoost算法的高炉铁水含钒预测模型[J]. 华北理工大学学报(自然科学版), 2020, 42(2): 20-28. LI Zhenkai, LIU Xiaojie, HAO Liangyuan, et al. Prediction model of vanadium containing molten iron in blast furnace based on adaboost algorithm [J]. Journal of North China University of Science and Technology(Natural Science Edition), 2020, 42(2): 20-28.
[30] 刘子源, 王翀, 李晓飞. 基于AdaBoost算法的直升机结构制造复杂度估算[J]. 中国电子科学研究院学报, 2020, 15(10): 977-983. LIU Ziyuan, WANG Chong, LI Xiaofei. The helicopter structure manufacture complexity estimation based on adaBoost algorithm [J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(10): 977-983.
[31] 费云利. 计算机逻辑回归分析[J]. 湖南工业职业技术学院学报, 2020, 20(1): 14-17. FEI Yunli. Logistic regression analysis on computer [J]. Journal of Hunan Industry Polytechnic, 2020, 20(1): 14-17.
[1] 李献云,杨甫德. 自杀倾向的认知行为治疗[J]. 山东大学学报 (医学版), 2022, 60(4): 1-9.
[2] 况利,徐小明,曾琪. 机器学习用于自杀研究的综述[J]. 山东大学学报 (医学版), 2022, 60(4): 10-16.
[3] 姚志英,魏艳欣,汪心婷,张杰,贾存显. 农村居民自杀行为暴露与自杀未遂关系的研究[J]. 山东大学学报 (医学版), 2022, 60(1): 86-92.
[4] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
[5] 杨九龙,于涛,薛付忠. 脑血管狭窄患者狭窄分布及筛查模型的建立[J]. 山东大学学报 (医学版), 2021, 59(11): 114-119.
[6] 秦艺文,杨晓帆,魏艳欣,刘宝鹏,Bob Lew,贾存显. 大学生生命意义感在心理扭力和自杀行为风险间的中介作用[J]. 山东大学学报 (医学版), 2021, 59(11): 76-83.
[7] 王晓璇,朱高培,孙娜,冯佳宁,肖宇飞,石福艳,王素珍. 东明县三春集镇贫困人群健康状况及影响因素分析[J]. 山东大学学报 (医学版), 2021, 59(1): 108-114.
[8] 安迪,汪心婷,刘珍珍,贾存显. 青少年不宁腿综合征与自杀行为的关系[J]. 山东大学学报 (医学版), 2020, 1(9): 77-82.
[9] 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61-66.
[10] 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81-87.
[11] 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16.
[12] 龚茁,张敏敏,王志萍. 流产经历和子宫肌瘤家族史对子宫肌瘤患病风险的影响[J]. 山东大学学报(医学版), 2017, 55(9): 100-104.
[13] 李笑莹,刘芳,车海杰,张尽晖. 肿瘤标志物预测孤立性肺结节恶性概率模型的建立与初步评价[J]. 山东大学学报(医学版), 2017, 55(4): 60-64.
[14] 王永强,张维全,孙启峰,董晓鹏,彭传亮,张媛,赵小刚. 细胞角蛋白14基因在非小细胞肺癌中的表达与意义[J]. 山东大学学报(医学版), 2017, 55(3): 83-87.
[15] 王艺桦,马琳,阚艳敏,王文韬. 剖宫产术后早期子宫切口缺陷的超声观察及相关因素分析[J]. 山东大学学报(医学版), 2016, 54(5): 39-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[2] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[3] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[4] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[5] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[6] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[7] 王晓菊1 ,汪明明2 ,徐皖苏2 ,赵胜梅3 ,崔速南2 ,李晓迎2 ,刘春华1
. 慢性HBV活动性感染者外周血淋巴细胞
泛素mRNA的表达及临床意义

[J]. 山东大学学报(医学版), 2009, 47(02): 58 -61 .
[8] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[9] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .
[10] 王学萍,杨洪玲. 洛汀新治疗高血压50例报告[J]. 山东大学学报(医学版), 2007, (2): 213 .