您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (10): 96-102.doi: 10.6040/j.issn.1671-7554.0.2020.1116

• 临床医学 • 上一篇    下一篇

新生儿大脑纤维束观察值及其对侧化的影响

刘艳艳1,付振美1,2,3,于乔文1,2,3,隋毅4,陈金鸽1,高洁1, 林祥涛1,2,3,王锡明1,2,3,侯中煜1,2,3   

  1. 1. 山东第一医科大学附属省立医院影像科, 山东 济南 250021;2.山东大学附属省立医院影像科, 山东 济南 250021;3.山东省立医院影像科, 山东 济南 250021;4.东营市第二人民医院影像科, 山东 东营 257000
  • 发布日期:2021-10-15
  • 通讯作者: 侯中煜. E-mail:houzhongyuqq@163.com
  • 基金资助:
    国家自然科学基金(81001223,81601295);山东省优秀中青年科学家科研奖励基金(BS2010YY048);山东省重点研发计划(2017GSF218077);山东省医药卫生科技发展计划(2106WS0435);山东省自然科学基金青年项目(ZR2016HQ27);山东第一医科大学学术提升计划(2019QL023)

Observation value of neonatal cerebral fiber bundle and its effect on lateralization

LIU Yanyan1, FU Zhenmei1,2,3, YU Qiaowen1,2,3, SUI Yi4, CHEN Jinge1, GAO Jie1, LIN Xiangtao1,2,3, WANG Ximing1,2,3, HOU Zhongyu1,2,3   

  1. 1. Department of Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China;
    2. Department of Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China;
    3. Department of Imaging, Shandong Provincial Hospital, Jinan 250012, Shandong, China;
    4. Department of Imaging, The Second Peoples Hospital of Dongying, Dongying 257000, Shandong, China
  • Published:2021-10-15

摘要: 目的 探讨新生儿纤维束追踪参数改变对纤维束追踪稳定性及纤维侧化发育的影响。 方法 获取40例36.6~42.1周(中位数为40周)足月新生儿多球壳弥散张量数据(HARDI),使用MRtrix3软件,采用多感兴趣区(ROIs)协议追踪皮质脊髓束(CST)、扣带纤维(CGC)、胼胝体大钳(Fmajor)、胼胝体小钳(Fminor)、下纵束(ILF)、钩束(UNC)、额枕下束(IFO)等脑内主要纤维束,通过双因素重复方差分析及计算期望值的方法分析不同终止值域及最大转角对纤维束体积及稳定性的影响,采用裂区设计分析不同参数对侧化发育的影响。 结果 当最大转角为45°时纤维体积明显减少,当纤维终止值域为0.02时,纤维追踪的评分者内信度及评分者间信度减低且一致性离散度增大;不同的纤维追踪参数设定对双侧不同纤维的侧化存在影响,双侧皮质脊髓束、扣带纤维及钩束的侧化发育均有统计学意义(P<0.001,P=0.017,P=0.024)。在皮质脊髓束、扣带束的分数各向异性(FA)平均值测量中,终止值域和最大转角对双侧皮质脊髓束、扣带束的侧化影响的主效应均具有统计学意义。 结论 采用合适的追踪参数设定能够提高纤维追踪的稳定性,有助于分析新生儿大脑发育的普遍规律。

关键词: 新生儿, 白质纤维束, 纤维追踪, 多球壳弥散张量图像

Abstract: Objective To explore the effect of the changes of parameters of neonatal cerebral fiber bundle on the reproducibility and lateralization. Methods High angular resolution diffusion imaging(HARDI)data were obtained in 40 term infants born between 36.6 and 42.1 weeks(median 40 weeks). Multiple regions of interest(ROIs)protocol were used to describe the main brain tracks, such as cortico-spinal tract(CST), cingulum cingulate(CGC), forceps major(Fmajor)and frontal projection(Fminor)of corpus callosum, inferior longitudinal fasciculus(ILF), uncinate fasciculus(UNC)and inferior fronto-occipital fasciculus(IFO)by MRtrix3 software. Different cutoff values and angles were analyzed to evaluate the volume changes and reproducibility of tracks, and the effect on lateralization was analyzed with splicing design variance analysis. Results The volume of tracts significantly reduced if the angle was 45, while the inter-rater and intra-rater variability reduced with the consistency dispersion increased if the cutoff value was 0.02. The changes of tractography parameters affected the results of lateralization analysis. The bilateral CST, CGC and UNC showed significant lateralization. The FA values of corticospinal tract and cingulate tract showed statistically significant lateralization, which were mainly affected by changes of the cutoff and angle. Conclusion Optimal parameters of tractography will improve the reproducibility of results of fiber tracking, which is expected to be helpful to describe development of newborn white matter tracts.

Key words: Newborn, White matter bundle, Tractography, Multi-shell high angular resolution diffusion imaging

中图分类号: 

  • R722.1
[1] Prckovska V, Rodrigues P, Puigdellivol Sanchez A, et al. Reproducibility of the structural connectome reconstruction across diffusion methods [J]. Neuroimaging, 2016, 26(1): 46-57.
[2] Vasung L, Charvet CJ, Shiohama T, et al. Ex vivo fetal brain MRI: recent advances, challenges, and future directions [J]. Neuroimage, 2019, 195: 23-37. doi:10.1016/j.neuroimage.2019.03.034.
[3] Tournier JD, Smith R, Raffelt D, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualization [J]. Neuroimage, 2019, 202: 116137. doi:10.1016/j.neuroimage.2019.116137.
[4] Ouyang A, Yu Q, Mishra V, et al. Structural development of human brain white matter from mid-fetal to perinatal stage [J]. Proc SPIE Int Soc Opt Eng, 2015, 9417: 94171P. doi:10.1117/12.2082418.
[5] Yu Q, Peng Y, Mishra V, et al. Microstructure, length, and connection of limbic tracts in normal human brain development [J]. Front Aging Neurosci, 2014, 6: 228. doi:10.3389/fnagi.2014.00228.
[6] Kastler A, Attye A, Heck O, et al. Greater occipital nerve MR tractography: Feasibility and anatomical considerations [J]. J Neuroradiol, 2018, 45(1): 54-58.
[7] Stieltjes B, Kaufmann WE, van Zijl PC, et al. Diffusion tensor imaging and axonal tracking in the human brainstem [J].Neuroimage, 2001, 14(3): 723-735.
[8] 王丽凤, 李峥, 于乔文. 足月新生儿大脑皮质时间-空间异质性发育的磁共振弥散张量及弥散峰度[J]. 山东大学学报(医学版), 2019, 57(9): 97-103,108. WANG Lifeng, LI Zheng, YU Qiaowen. MR-diffusion tensor image and diffusion kurtosis image of spatio-temporal development of new-born cerebral cortex [J]. Journal of Shandong University(Health Sciences), 2019, 57(9): 97-103,108.
[9] 侯欣, 杨健,鱼博浪. 磁共振扩散张量成像在新生儿脑发育的应用及展望[J]. 磁共振成像, 2012, 3(1): 74-78. HOU Xin, YANG Jian, YU Bolang. Assessment of neonatal brain development by diffusion tensor imaging [J]. Chinese Journal of Magnetic Resonance Imaging, 2012, 3(1): 74-78.
[10] Barnett ML, Tusor N, Ball G, et al. Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI [J]. Neuroimage Clin, 2017, 17: 596-606. doi:10.1016/j.nicl.2017.11.017.
[11] Dubois J, Dehaene-Lambertz G, Kulikova S, et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants [J]. Neuroscience, 2014, 276: 48-71. doi:10.1016/j.neuroscience.2013.12.044.
[12] Nath V, Schilling KG, Blaber JA, et al. Comparison of Multi-Fiber Reproducibility of PAS-MRI and Q-ball With Empirical Multiple b-Value HARDI [J].Proc SPIE Int Soc Opt Eng, 2017, 10133:101330L.doi:10.1117/12.2254736.
[13] Xu G, Takahashi E, Folkerth RD, et al. Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: neuroanatomic insights [J]. Cereb Cortex, 2014, 24(3): 579-592.
[14] Martínez-Heras E, Varriano F, Prckovska V, et al. Improved framework for tractography reconstruction of the optic radiation [J]. PLoS One, 2015,10(9): e0137064. doi:10.1371/journal.pone.0137064.
[15] Katorza E, Strauss G, Cohen R, et al. Apparent diffusion coefficient levels and neurodevelopmental outcome in fetuses with brain MR imaging white matter hyperintense signal [J]. AJNR Am J Neuroradiol, 2018, 39(10): 1926-1931.
[16] Kulikova S, Hertz-Pannier L, Dehaene-Lambertz G, et al. Multi-parametric evaluation of the white matter maturation [J]. Brain Struct Funct, 2015, 220(6): 3657-3672.
[17] Song JW, Mitchell PD, Kolasinski J, et al. Asymmetry of white matter pathways in developing human brains [J]. Cereb Cortex, 2015, 25(9): 2883-2893.
[18] Neal JB, Filippi CG, Mayeux R. Morphometric variability of neuroimaging features in children with agenesis of the corpus callosum [J]. BMC Neurol, 2015, 15: 116. doi:10.1186/s12883-015-382-5.
[19] Ocklenburg S, Friedrich P, Güntürkün O, Gen E. Intrahemispheric white matter asymmetries: the missing link between brain structure and functional lateralization [J]. Rev Neurosci, 2016, 27(5): 465-480.
[20] Telford EJ, Cox SR, Fletcher-Watson S, et al. A latent measure explains substantial variance in white matter microstructure across the newborn human brain [J]. Brain Struct Funct, 2017, 222(9): 4023-4033.
[21] Ciliz M, Sartor J, Lindig T, et al. Brain-Area specific white matter hyperintensities: associations to falls in Parkinson's Disease [J]. J Parkinsons Dis, 2018, 8(3): 455-462.
[22] Jolles D, Wassermann D, Chokhani R, et al. Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning [J]. Brain Struct Funct, 2016, 221(3): 1337-1351.
[23] Briggs RG, Chakraborty AR, Anderson CD, et al. Anatomy and white matter connections of the inferior frontal gyrus [J]. Clin Anat, 2019, 32(4): 546-556.
[24] Tokariev A, Stjerna S, Lano A, et al. Preterm Birth Changes Networks of Newborn Cortical Activity [J]. Cereb Cortex, 2019, 29(2): 814-826.
[25] Wheelock MD, Austin NC, Bora S, et al. Altered functional network connectivity relates to motor development in children born very preterm [J]. Neuroimage, 2018, 183: 574-583. doi:10.1016/j.neuroimage.2018.08.051.
[1] 邹丽萍,贺玉静,谢元忠,赵建云,许春华,马永胜,李传彬,刘晓雪,刘翀,赵小冬,孙红云. 济南市1 614名HBsAg阳性产妇新生儿首针乙肝疫苗接种时间分布及影响因素[J]. 山东大学学报 (医学版), 2022, 60(11): 113-120.
[2] 刘晓,郭新元,张德健,李琦,李宁,薛江. 床旁肺脏超声及评分对70例新生儿呼吸窘迫综合征的诊治效果[J]. 山东大学学报 (医学版), 2021, 59(7): 50-56.
[3] 宋立,张艳,刘洋,郝丽红,王丹. 新生儿丙型副伤寒沙门菌败血症1例及文献复习[J]. 山东大学学报 (医学版), 2020, 58(5): 121-124.
[4] 王丽凤,李峥,于乔文. 足月新生儿大脑皮质时间-空间异质性发育的磁共振弥散张量及弥散峰度[J]. 山东大学学报 (医学版), 2019, 57(9): 97-103.
[5] 于娜,郭情情,孙梅,盛燕,马增香,秦莹莹. 甲状腺癌术后行IVF/ICSI-ET助孕临床结局[J]. 山东大学学报 (医学版), 2018, 56(9): 54-58.
[6] 袁鹏,李娅,张飞雪,王青. 肺脏超声在新生儿感染性肺炎诊断中的临床价值[J]. 山东大学学报 (医学版), 2018, 56(6): 29-34.
[7] 陈栋,李晓莺,马静,王云峰,张文. 电子支气管镜在新生儿呼吸困难诊疗中的应用[J]. 山东大学学报(医学版), 2016, 54(8): 84-87.
[8] 洪海洁,孙文娟,张媛,徐永萍. 足月选择性剖宫产分娩新生儿不良结局的影响因素[J]. 山东大学学报(医学版), 2016, 54(5): 56-61.
[9] 朱静,郭爱丽,张楠,秦明明,刘立娟,朱薇薇. 促红细胞生成素治疗新生儿缺氧缺血性脑病的疗效观察[J]. 山东大学学报(医学版), 2016, 54(4): 60-63.
[10] 臧丽娇,仇杰,庄根苗,安丽. 血清S100B蛋白、神经元特异性烯醇化酶与新生儿低血糖脑损伤的相关性[J]. 山东大学学报(医学版), 2016, 54(4): 51-54.
[11] 庄根苗,唐玲,臧丽娇,安丽. 新生儿缺氧缺血性脑病中血清前白蛋白水平与新生儿行为神经测定的相关性[J]. 山东大学学报(医学版), 2016, 54(12): 37-40.
[12] 高南南, 陈栋, 于永慧, 张丽丽. 血清生物学标志物在新生儿坏死性小肠结肠炎手术评估中的价值[J]. 山东大学学报(医学版), 2015, 53(6): 73-76.
[13] 和振芬. 提高新生儿采血标本成功率和质量的方法探讨[J]. 山东大学学报(医学版), 2014, 52(Z1): 146-146.
[14] 芦红伟. 新生儿低钠血症50例临床观察[J]. 山东大学学报(医学版), 2014, 52(S1): 63-64.
[15] 刘剑敏. 茵栀黄注射液灌肠联合培菲康口服治疗新生儿黄疸的疗效观察[J]. 山东大学学报(医学版), 2014, 52(S1): 57-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[2] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[3] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[4] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[5] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[6] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[7] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .
[8] 冯复利1,魏树珍2,张永欢3,李莉1,陈融1,李瑞峰1. 胰岛素抵抗大鼠高死亡率与Klotho表达关系的研究[J]. 山东大学学报(医学版), 2010, 48(6): 5 -8 .
[9] 钟女娟1,宋咏梅2,刘更生2,薛付忠1,刘言训1. 中药经验要素贝叶斯网络模型构建及应用[J]. 山东大学学报(医学版), 2012, 50(2): 157 .
[10] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .