您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (6): 94-102.doi: 10.6040/j.issn.1671-7554.0.2021.0231

• 临床医学 • 上一篇    下一篇

膀胱癌circRNAs介导的ceRNA网络及预后评估模型的构建

米琦,史爽,李娟,李培龙,杜鲁涛,王传新   

  1. 山东大学第二医院检验医学中心, 山东 济南 250033
  • 发布日期:2021-06-10
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.com
  • 基金资助:
    国家自然科学基金(81873977,82072368);山东省重点研发计划(2019GSF108091);国家重点研发计划(2018YFC0114700)

Construction of circRNA-mediated ceRNA network and prognostic assessment model for bladder cancer

MI Qi, SHI Shuang, LI Juan, LI Peilong, DU Lutao, WANG Chuanxin   

  1. Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
  • Published:2021-06-10

摘要: 目的 探究膀胱癌中差异性表达的环状RNAs(circRNAs),并构建circRNAs介导的ceRNA网络及预后评估模型。 方法 下载并分析基因表达数据库(GEO)和癌症基因组图谱(TCGA)中膀胱癌RNA测序数据,以|log2 fold change(log2FC)|>1、P-value<0.05为纳入标准,筛选RNA差异表达谱。整合TCGA膀胱癌RNA差异分析数据及CircInteractome等公共数据库数据,构建circRNA-miRNA-mRNA ceRNA网络,通过GEO与TCGA对网络中mRNAs进行功能富集分析。利用String数据库挖掘ceRNA网络分子的相互作用关系。采用Cox回归分析筛选预后相关mRNAs,并构建膀胱癌预后风险评估模型;利用“time ROC”软件包绘制ROC曲线,对模型效能进行评估。 结果 通过2个GEO数据集的差异分析,共筛选到4个circRNAs,分别是hsa_circ_0102787、hsa_circ_0103114、hsa_circ_0102402与hsa_circ_0104387。通过公共数据库及TCGA差异分析,构建了由circRNAs介导的ceRNA网络,包含4个circRNAs、23个miRNAs和86个mRNAs;功能富集分析显示该网络mRNAs涉及多个与肿瘤调控相关的生物学过程;网络中mRNAs存在相互作用关系,生存分析显示6个mRNAs与膀胱癌预后相关。以“风险评分=(-0.356 9)×ABRACL+(-0.264 4)×MAP3K8”构建膀胱癌预后风险评估模型,Kaplan-Meier曲线提示高评分组预后差(P<0.001),模型5年总体生存率的AUC=0.744。 结论 发掘4个膀胱癌中表达失调的circRNAs,构建了膀胱癌相关circRNA-miRNA-mRNA网络及预后评估模型,为揭示膀胱癌发生发展的分子机制及寻找新的诊断、预后标志物奠定了理论基础。

关键词: 膀胱癌, circRNAs, ceRNA, 预后, Cox风险评估模型

Abstract: Objective To identify the differentially expressed circular RNAs(circRNAs)and construct a circRNAs-mediated ceRNA network and a prognostic assessment model. Methods Data were downloaded from Gene Expression Omnibus(GEO)and The Cancer Genome Atlas(TCGA)database. Differential expressed analysis was performed to explore the differentially expressed RNAs in bladder cancer tissues with the standard of |log2 fold change(log2FC)|>1, P<0.05. Based on multiple detabases, such as TCGA and CircInteractome, the circRNA-miRNA-mRNA ceRNA network was constructed, and functional enrichment analysis of mRNAs was conducted. Subsequently, the relationship of mRNAs in ceRNA network was analyzed through the String database. The mRNAs related to prognosis were screened with univariate Cox regression model, and a prognostic assessment model was constructed. A ROC curve was drawn with “time ROC” package to evaluate the effectiveness of the model. Results Differential expressed analysis screened out 4 circRNAs, including hsa_circ_0102787, hsa_circ_0103114, hsa_circ_0102402 and hsa_circ_0104387. A ceRNA network was constructed, which contained 4 circRNAs, 23 miRNAs and 86 mRNAs. Functional enrichment analysis showed those mRNAs participated in several cancer-related pathways. The interaction between mRNAs in the ceRNA network was visualized by PPI network. Survival analysis revealed that 6 mRNAs were related to the prognosis of bladder cancer. Then, a prognostic assessment model was constructed based on “the risk score=(-0.356 9)×ABRACL+(-0.264 4)×MAP3K8.” Kaplan Meier analysis showed patients with high risks had a poor prognosis(P<0.001), and the AUC of the five-year overall survival rate was 0.744. Conclusion This study identififed 4 differentially expressed circRNAs, and constructed a circRNA-miRNA-mRNA network and a prognostic assessment model, which provides a new insight for the exploration of the occurrence and development of bladder cancer.

Key words: Bladder cancer, circRNAs, ceRNA, Prognosis, Cox regression model

中图分类号: 

  • R737.14
[1] Antoni S, Ferlay J, Soerjomataram I, et al. Bladder cancer incidence and mortality: a global overview and recent trends [J]. Eur Urol, 2017, 71(1): 96-108.
[2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[3] Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer [J]. Cell, 2017, 171(3): 540-556.
[4] Kamat AM, Hahn NM, Efstathiou JA, et al. Bladder cancer [J]. Lancet, 2016, 388(10061): 2796-2810.
[5] Witjes JA, Lebret T, Comperat EM, et al. Updated 2016 EAU Guidelines on muscle-invasive and metastatic bladder cancer [J]. Eur Urol, 2017, 71(3): 462-475.
[6] Dreicer R. Chemotherapy for advanced urothelial cancer: end of the beginning? [J]. Lancet Oncol, 2017, 18(5): 567-569.
[7] Cambier S, Sylvester RJ, Collette L, et al. EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1-3 years of maintenance bacillus calmette-guerin [J]. Eur Urol, 2016, 69(1): 60-69.
[8] Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs [J]. Nat Biotechnol, 2014, 32(5): 453-461.
[9] Liu YC, Li JR, Sun CH, et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data [J]. Nucleic Acids Res, 2016, 44(D1): D209-215.
[10] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency [J]. Nature, 2013, 495(7441): 333-338.
[11] Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition [J]. Nature, 2014, 505(7483): 344-352.
[12] Su Y, Feng W, Shi J, et al. Correction to: circRIP2 accelerates bladder cancer progression via miR-1305/Tgf-β2/smad3 pathway [J]. Mol Cancer, 2021, 20(1): 1. doi: 10.1186/s12943-019-1129-5.
[13] Su H, Tao T, Yang Z, et al. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression [J]. Mol Cancer, 2019, 18(1): 27. doi: 10.1186/s12943-019-0951-0.
[14] Meng S, Zhou H, Feng Z, et al. CircRNA: functions and properties of a novel potential biomarker for cancer [J]. Mol Cancer, 2017, 16(1): 94. doi: 10.1186/s12943-017-0663-2.
[15] Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer genome atlas(TCGA)[J]. Methods in molecular biology(Clifton, NJ), 2016, 1418: 111-141. doi: 10.1007/978-1-4939-3578-9_6.
[16] Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies [J]. Nucleic acids research, 2015, 43(7): e47. doi: 10.1093/nar/gkv007.
[17] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139-140.
[18] Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs [J]. RNA Biol, 2016, 13(1): 34-42.
[19] Jiang J, Bi Y, Liu XP, et al. To construct a ceRNA regulatory network as prognostic biomarkers for bladder cancer [J]. J Cell Mol Med, 2020, 24(9): 5375-5386.
[20] Otasek D, Morris JH, Boucas J, et al. Cytoscape Automation: empowering workflow-based network analysis [J]. Genome Biol, 2019, 20(1): 185. doi: 10.1186/s13059-019-1758-4.
[21] Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs [J]. Nucleic Acids Res, 2017, 45(D1): D353-D361.
[22] Gene OC. Gene ontology consortium: going forward [J]. Nucleic Acids Res, 2015, 43(Database issue): D1049-1056.
[23] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets [J]. Nucleic Acids Res, 2019, 47(D1): D607-D613.
[24] Weng W, Wei Q, Toden S, et al. Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer [J]. Clin Cancer Res, 2017, 23(14): 3918-3928.
[25] Cheng Z, Yu C, Cui S, et al. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1 [J]. Nat Commun, 2019, 10(1): 3200. doi: 10.1038/s41467-019-11162-4.
[26] Zeng Z, Zhou W, Duan L, et al. Circular RNA circ-VANGL1 as a competing endogenous RNA contributes to bladder cancer progression by regulating miR-605-3p/VANGL1 pathway[J]. J Cell Physiol, 2019, 234(4): 3887-3896.
[27] 史爽, 李娟, 米琦, 等. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报(医学版), 2020, 58(7): 47-52. SHI Shuang, LI Juan, MI Qi, et al. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer [J]. Journal of Shandong University(Health Sciences), 2020, 58(7): 47-52.
[28] Chen Y, Xu T, Xie F, et al. Evaluating the biological functions of the prognostic genes identified by the Pathology Atlas in bladder cancer [J]. Oncol Rep, 2021, 45(1): 191-201.
[29] Vougioukalaki M, Kanellis DC, Gkouskou K, et al. Tpl2 kinase signal transduction in inflammation and cancer[J]. Cancer Letters, 2011, 304(2): 80-89.
[1] 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96.
[2] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[3] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[4] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[5] 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122.
[6] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[7] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[8] 孙振国,田辉. 加速康复外科指导下微创食管癌切除术流程优化之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 33-37.
[9] 朱永村,赵修世,孙楠楠,姚志刚,周星辰,牟坤. 前列腺透明细胞腺癌3例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(11): 102-107.
[10] 时萧寒,李华玉,李峰. 接受Stupp方案治疗的老年胶质母细胞瘤患者预后的影响因素[J]. 山东大学学报 (医学版), 2022, 60(10): 42-48.
[11] 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147.
[12] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[13] 陈丽宇,肖娟,吕仙忠,段宝敏,洪凡真. 影响孕产妇下肢深静脉血栓预后的危险因素分析[J]. 山东大学学报 (医学版), 2021, 59(7): 38-42.
[14] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
[15] 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张杰,李振华,孙晋浩,暴丽华,刘岳鹏. 恒定磁场对Schwann细胞氧化损伤的保护作用[J]. 山东大学学报(医学版), 2007, 45(3): 229 -232 .
[2] 郑敏,郝跃伟,刘雪平,赵婷婷. 血小板膜糖蛋白Ibα基因HPA-2、Kozak序列多态性与脑梗死的相关性研究[J]. 山东大学学报(医学版), 2008, 46(3): 292 -295 .
[3] 方英立,马玉燕,刘锡梅,周文 . 急诊剖宫产患者围手术期替硝唑合理应用[J]. 山东大学学报(医学版), 2007, 45(10): 995 .
[4] 姜红菊,李润智,王营,徐冬梅,张梅,张运,李继福 . 冠状动脉粥样硬化斑块形态及介入治疗与MMP-9的关系[J]. 山东大学学报(医学版), 2008, 46(10): 966 -970 .
[5] 王术芹,齐 峰,吴剑波,孙宝柱. 罗哌卡因对大鼠离体主动脉收缩作用的钙离子调节机制[J]. 山东大学学报(医学版), 2008, 46(8): 773 -776 .
[6] 滕学仁,赵永生,胡光亮,周伦,李建民 . 两种方法保存同种异体髌腱移植重建膝关节交叉韧带的光镜电镜观察[J]. 山东大学学报(医学版), 2008, 46(10): 945 -950 .
[7] 焦芳芳,刘世青,李飞,李长生,王琴,孙青,鹿伟 . 化瘀理肺方对大鼠肺间质纤维化时Smad7和TGF-β表达的影响[J]. 山东大学学报(医学版), 2007, 45(10): 1054 -1058 .
[8] 赵瑛,颜磊,张辉,于鹏,李明江,赵兴波. 精子相关抗原9在卵巢浆液性上皮肿瘤中的表达[J]. 山东大学学报(医学版), 2012, 50(2): 98 .
[9] 袁吴敏,赵志伦,王洁贞 . 吸烟和饮酒与颅内肿瘤关系的Meta分析[J]. 山东大学学报(医学版), 2006, 44(11): 1146 -1149 .
[10] 李明霞,王学禹 . 儿童急性播散性脑脊髓炎31例临床与MRI特点[J]. 山东大学学报(医学版), 2008, 46(8): 828 -830 .