您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (9): 53-59.doi: 10.6040/j.issn.1671-7554.0.2017.061

• 基础医学 • 上一篇    下一篇

脊髓损伤修复的复合透明质酸水凝胶支架的构建及其评价

刘东1,朱冬昀2,彭长亮1,张程1,赵杰1,高春正1   

  1. 1.山东大学第二医院脊柱外科, 山东 济南 250000;2.临邑县人民医院骨科, 山东 临邑 251500
  • 收稿日期:2017-01-16 出版日期:2017-09-10 发布日期:2017-09-10
  • 通讯作者: 高春正. E-mail:sdeyjzwk@163.com E-mail:sdeyjzwk@163.com
  • 基金资助:
    山东省科技发展计划(2014GSF118045)

Construction and appraisal of hyaluronic acid hydrogel scaffold in the treatment of treat spinal cord injury

LIU Dong1, ZHU Dongyun2, PENG Changliang1, ZHANG Cheng1, ZHAO Jie1, GAO Chunzheng1   

  1. 1. Department of Spine Surgery, Second Hospital of Shandong University, Jinan 250000, Shandong, China;
    2. Department of Orthopaedic, Linyi Peoples Hospital, Linyi 251500, Shandong, China
  • Received:2017-01-16 Online:2017-09-10 Published:2017-09-10

摘要: 目的 评价接枝Nogo-66受体(NgR)抗体和多聚左旋赖氨酸(PLL)的透明质酸(HA)水凝胶支架的作用,及转染β神经生长因子(β-NGF)基因的内皮祖细胞(EPCs)能否在支架内稳定表达外源基因。 方法 采用冰冻干燥法制备多孔HA水凝胶材料,将NgR抗体和PLL接枝到HA支架上。体外培养EPCs,并通过携带β-NGF腺病毒转染EPCs,将EPCs与支架共培养,通过扫描电镜观察支架结构,将细胞按处理方式及培养方式分为β-NGF+组、Scaffold-β-NGF+组、β-NGF-组、 Scaffold-β-NGF-组、对照组和Scaffold-对照组。采用细胞活力(CCK-8)法及HE法检测EPCs在支架上的生长情况,采用乳酸脱氢酶(LDH)-细胞毒性法检测支架的细胞毒性,采用ELISA法、Rt-PCR法和Western blotting法检测β-NGF的表达。 结果 制备的支架具备三维多孔结构,孔径(200±15)μm,大小较均一,EPCs在支架上的生长明显优于培养板中的生长状况(F=468 518.044, P<0.001),且随时间推移,细胞数目差异有统计学意义(F=2 678 658.138, P<0.001),支架的细胞毒性相比培养板无明显异常(F=0.680, P=0.429)。EPCs在支架上可以稳定表达β-NGF,且Scaffold-β-NGF+组mRNA及蛋白质的表达量均优于β-NGF+组(mRNA: F=651.554, P<0.001;蛋白: F=14 671.733, P<0.001)。 结论 EPCs与NgR抗体-PLL复合A水凝胶支架具有良好的生物相容性。该HA水凝胶支架有望作为修复脊髓损伤的组织工程载体。

关键词: 透明质酸水凝胶支架, 腺病毒, β-神经生长因子, 内皮祖细胞, 脊髓损伤

Abstract: Objective To evaluate the role of hyaluronic acid(HA)scaffold modified with Nogo-66 receptor(NgR)antibody and poly-l-lysine(PLL), and to determine whether endothelial progenitor cells(EPCs)transfected with β nerve growth factor(β-NGF)could stably express exogenous gene in stent. Methods The NgR antibody and PLL were grafted to the porous HA hydrogel scaffold which was produced by freeze drying method. In vitro study, the EPCs were isolated from Wistar rats, and then β-NGF was transfected to EPCs by recombinant adenovirus. EPCs were then cultured on the HA hydrogel scaffold, and the internal structure of the HA hydrogel scaffold was observed with scanning electron microscope. EPCs were divided into β-NGF+ group, Scaffold-β-NGF+ group, β-NGF- group, Scaffold-β-NGF- group, control group and Scaffold-control group. The growth of the EPCs cultured on the scaffold was determined with cell vitality detection(CCK-8)and HE. The cytotoxicity of HA hydrogel scaffold was detected with lactate dehydrogenase(LDH). The expression of β-NGF was detected with Rt-PCR, Western blotting and enzyme-linked 山 东 大 学 学 报 (医 学 版)55卷9期 -刘东,等.脊髓损伤修复的复合透明质酸水凝胶支架的构建及其评价 \=-immunosorbent(ELISA)assays in vitro. Results The aperture size of the porous three-dimensional structure of HA hydrogel scaffold was(200±15)μm. The EPCs grew better on the scaffold(F=468 518.044, P<0.001). There existed significant difference over time in the number of cells(F=2 678 658.138, P<0.001). There was no difference in cytotoxicity between HA scaffold and culture plate(F=0.680, P=0.429). EPCs could stably express β-NGF on the scaffold, and the mRNA and protein expressions of β-NGF in the Scaffold-β-NGF+ group were better than those in the β-NGF+ group(mRNA: F=651.554, P<0.001; β-NGF: F=14 671.733, P<0.001). Conclusion EPCs and the newly created HA hydrogel scaffold modified with NgR antibody and PPL have a good biocompatibility. This scaffold may serve as an optimal biomaterial for tissue engineering in spinal cord injury repair.

Key words: EPCs, Spinal cord injury, Adenovirus, β-NGF, Hyaluronic acid hydrogel scaffold

中图分类号: 

  • R681
[1] Sun L, Pan J, Peng Y, et al. Anabolic steroids reduce spinal cord injury-related bone loss in rats associated with increased Wnt signaling[J]. Spinal Cord Med, 2013, 36(6): 616-622.
[2] 赵永青, 苏衍萍, 韩凤岳, 等. 甲基强的松龙对急性脊髓损伤神经元保护作用的实验研究[J]. 中华神经外科杂志, 2005, 21(6): 367-370. ZHAO Yongqing, SU Yanping, HAN Fengyue, et al. The experimental study of methyl prednisolone on protecting neurons after spinal cord injury in rats[J]. Chinese Journal of Neurosurgery, 2005, 21(6): 367-370.
[3] Guest J, Santamaria AJ, Benavides FD, et al. Clinical translation of autologous Schwann cell transplantation for the treatment of spinal cord injury[J]. Curr Opin Organ Transplant, 2013, 18(6): 682-689.
[4] 高平, 孙占胜, 王伯珉, 等. 骨髓间充质干细胞诱导成神经元样细胞移植治疗脊髓损伤[J]. 中国组织工程研究, 2013, 17(23): 4256-4263. GAO Ping, SUN Zhansheng, WANG Bomin, et al. Transplantation of neuron-like cells from bone marrow mesenchymal stem cells for treatment of spinal cord injury[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(23): 4256-4263.
[5] Blesch A, Fischer I, Tuszynski MH, et al. Chapter 35-Gene therapy, neurotrophic factors and spinal cord regeneration[J]. Handb Clin Neurol, 2012, 109: 563-574.
[6] 刘丽霞, 王永成. 神经干细胞转基因疗法与运动性脊髓损伤的治疗[J]. 中国组织工程研究与临床康复, 2011, 15(27): 5115-5118. LIU Lixia, WANG Yongcheng. Neural stem cell gene therapy for exercise-induced spinal cord injury[J]. Chinese Journal of Tissue Engineering Research, 2011, 15(27): 5115-5118.
[7] Goldshmit Y, Frisca F, Pinto AR, et al. Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury[J]. Brain Behav, 2014, 4(2): 187-200.
[8] 张文龙, 祁全. 组织工程支架在脊髓损伤治疗的研究进展[J]. 中国矫形外科杂志, 2014, 22(4): 320-323.
[9] Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation[J]. Tissue Eng, 2007, 13(8): 1845-1866.
[10] Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds[J]. Eur Cell Mater, 2003, 5(5): 29-40.
[11] Sanes JR. Roles of extracellular-matrix in neural development[J]. Ann Rev Physiol, 1983, 45(1): 581-600.
[12] Yong VW, Horie H, Kim SU. Comparison of six different substrata on the plating efficiency, differentiation and survival of human dorsal root ganglion neurons in culture[J]. Dev Neurosci, 1988, 10(4): 222-230.
[13] Pan LJ, Ren YJ, Cui FZ, et al. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold[J]. Journal of Neuroscience Research, 2009, 87: 3207-3220.
[14] Domeniconi M, Cao ZU, Spencer T, et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth[J]. Neuron, 2002, 35(2): 283-290.
[15] Liu BP, Fournier A, GrandPre T, et al. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor[J]. Science, 2002, 297(5584): 1190-1193.
[16] Crupi R, Paterniti I, Campolo M,et al. Exogenous T3 administration provides neuroprotection in a murine model of traumatic brain injury[J]. Pharmacol Res, 2013, 70(1): 80-89.
[17] 贾军, 冯世庆, 曾宪铁, 等. Nogo蛋白及其受体在脊髓损伤中的作用[J]. 国际骨科学杂志, 2015, 36(6): 441-444.
[18] Wei YT, He Y, Xu CL, et al. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury[J]. Biomed Mater Res B Appl Biomater, 2010, 95(1): 110-117.
[19] Tian WM, Zhang CL, Hou SP, et al. Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: In vitro[J]. J Controlled Release, 2005, 102(1): 13-22.
[20] Abe Y, Ozaki Y, Kasuya J, et al. Endothelial progenitor cells promote directional three-dimensional endothelial network formation by secreting vascular endothelial growth factor[J]. PLoS One, 2013, 8(12): 82085.
[21] 杜利, 刘亢丁. 内皮祖细胞生物学特征及其临床应用[J]. 中国组织工程研究与临床康复, 2011, 15(40): 7581-7584. DU Li, LIU Kangding. Biological characteristics and clinical application of endothelial progenitor cells[J]. Chinese Journal of Tissue Engineering Research, 2011, 15(40): 7581-7584.
[22] Wu DJ, Hao AH, Zhang C, et al. Promoting of angiogenesis and osteogenesis in radial critical bone defect regions of rabbits with nano-hydroxyapatite/collagen/PLA scaffolds plus endothelial progenitor cells[J]. Zhonghua Yi Xue Za Zhi, 2012, 92(23): 1630-1634.
[23] Dwivedi Y, Mondal AC, Rizavi HS, et al. Suicide brain is associated with decreased expression of neurotrophins[J]. Biol Psychiatry, 2005, 58(4): 315-324.
[24] Gao CZ, Ma SZ, Ji YL, et al. Sciatic nerve regeneration in rats stimulated by fibrin glue containing nerve growth factor: an experimental study[J]. Injury, 2008, 39(12): 1414-1420.
[25] Mutoh T, Guroff G. The role of phosphorylation in the action of nerve growth factor[J]. Biofactors, 1989, 2(2): 71-76.
[26] Drent M, Cobben NA, Henderson RF, et al. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation[J]. Eur Respir J, 1996, 9(8): 1736-1742.
[1] 陈磊,刘东晓,李开鸣,宋新强,曾宪思,蒋丽杰. 有序胶原材料联合CBD-BDNF对大鼠脊髓损伤的修复作用[J]. 山东大学学报(医学版), 2017, 55(5): 43-48.
[2] 谈红,孟楠,晋群,苏莉,张夏晓,陈英剑,郝哲,刘晓红. 不同剂量培哚普利对兔急性心肌梗死后内皮祖细胞及心功能的影响[J]. 山东大学学报(医学版), 2017, 55(2): 55-60.
[3] 肖俊超,蒋雯,南慧,王培荣. 重组腺病毒35型纤毛突蛋白增强西妥昔单抗的抗卵巢癌作用[J]. 山东大学学报(医学版), 2016, 54(5): 1-5.
[4] 李红志,刘静,宋岩,迟令懿,刘玉光. 利拉鲁肽对脊髓损伤修复作用的探讨[J]. 山东大学学报(医学版), 2016, 54(4): 1-5.
[5] 王思,李秀华,杜鹃,岳龙涛,王瑶,刘菲,郭配. 侧脑室注射腺病毒介导的GDNF基因对帕金森病的保护作用[J]. 山东大学学报(医学版), 2016, 54(4): 32-36.
[6] 张雯1,冯婷婷1,郑琳1,王红1,卢翌2,齐眉1,于修平1,唐伟1,赵蔚明1 . 重组腺病毒介导的RbAp48基因表达对人宫颈癌细胞生长、增殖的影响[J]. 山东大学学报(医学版), 2014, 52(4): 13-17.
[7] 牟乐明1,孙占胜1,王伯珉1,高平2,初向全3. 骨髓间充质干细胞移植对脊髓损伤大鼠Toll样受体4表达的影响[J]. 山东大学学报(医学版), 2014, 52(1): 37-41.
[8] 李旭,秦东京,曹新山,姜兴岳,张迪,王静. 无骨折脱位型颈脊髓损伤DTI征象与JOA评分的相关性[J]. 山东大学学报(医学版), 2013, 51(1): 83-87.
[9] 陈伟,谈红,李晓燕,杨燕,韦修莹,陈英剑,张红明. 冠心病患者外周血内皮祖细胞数量差异及其对内皮功能的影响[J]. 山东大学学报(医学版), 2012, 50(8): 73-76.
[10] 张慧,郭雨霁,郝爱军,马保华. 粒细胞集落刺激因子对急性脊髓损伤中小胶质细胞的作用[J]. 山东大学学报(医学版), 2012, 50(5): 10-.
[11] 刘杨,苗宇船. 滋补脾阴方药对大鼠脊髓损伤后脑源性神经营养因子表达的影响[J]. 山东大学学报(医学版), 2012, 50(10): 33-36.
[12] 刘晓阳,孙建民,崔新刚,蒋振松. 鞘内注射VEGF对大鼠脊髓损伤后神经纤维和神经元的保护作用[J]. 山东大学学报(医学版), 2011, 49(4): 38-42.
[13] 赵伟. 电针对脊髓损伤后硫酸软骨素蛋白多糖表达的影响[J]. 山东大学学报(医学版), 2011, 49(3): 73-.
[14] 赵伟. 电针对脊髓损伤后硫酸软骨素蛋白多糖表达的影响[J]. 山东大学学报(医学版), 2011, 49(3): 73-.
[15] 张文华,吴承远,李新钢,徐淑军,李刚,江玉泉,周茂德,刘猛. 人胶质细胞源性神经营养因子在肌萎缩性脊髓侧索硬化症小鼠模型基因治疗中的作用[J]. 山东大学学报(医学版), 2011, 49(11): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!