您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (9): 23-30.doi: 10.6040/j.issn.1671-7554.0.2017.145

• 基础医学 • 上一篇    下一篇

靶向抑制有丝分裂驱动蛋白治疗多西紫杉醇耐药前列腺癌的体外疗效

董伟1,邢乃栋2,吕家驹1,刘帅1,孙亮1,曹庆伟1,董宇昊1,刘钊1,丁森泰1   

  1. 1.山东大学附属省立医院泌尿外科, 山东 济南 250021;2.山东大学齐鲁医院泌尿外科, 山东 济南 250012
  • 收稿日期:2017-02-17 出版日期:2017-09-10 发布日期:2017-09-10
  • 通讯作者: 丁森泰. E-mail:dingsentai@126.com E-mail:dingsentai@126.com
  • 基金资助:
    国家自然科学基金(81202017);山东省重点研发计划(2016GSF201147);济南市科技发展计划(201121060)

The therapeutic efficacy of a potent KSP inhibitor S(MeO)TLC against docetaxel-resistant prostate cancer

DONG Wei1, XING Naidong2, LÜ Jiaju1, LIU Shuai1, SUN Liang1, CAO Qingwei1, DONG Yuhao1, LIU Zhao1, DING Sentai1   

  1. 1. Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China;
    2. Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Received:2017-02-17 Online:2017-09-10 Published:2017-09-10

摘要: 目的 探讨甲氧基-(S)-三苯甲基-L-半胱氨酸[S(MeO)TLC]靶向抑制有丝分裂驱动蛋白(KSP)在体外试验中对多西紫杉醇耐药前列腺癌的治疗效果。 方法 培养建立多西紫杉醇耐药前列腺癌细胞株(PC3R),Western blotting检测不同细胞株(PC3、DU145及PC3R)KSP蛋白表达水平;实验分空白对照组、PC3R组及PC3组,MTT及台盼兰染色细胞活性实验观察S(MeO)TLC抑制耐药细胞增殖效果;以耐药细胞株PC3R为研究对象,实验分为S(MeO)TLC组及对照组,Heochst染色、流式细胞仪及RT-PCR技术检测S(MeO)TLC诱导耐药细胞凋亡的效果。 结果 PC3、DU145、PC3R细胞KSP蛋白表达量差异无统计学意义(P>0.05)。PC3R细胞S(MeO)TLC半数抑制浓度(IC50)为120 nmol/L,与PC3细胞(IC50:106 nmol/L)比较,差异无统计学意义(P>0.05)。PC3R细胞给予S(MeO)TLC作用24 h后,87.9%细胞停滞在有丝分裂期;给药72 h后,有丝分裂期停滞细胞显著凋亡。与对照组相比,S(MeO)TLC组PC3R细胞Caspase-3(t=13.445, P=0.000 2)、Caspase-8(t=9.494, P=0.000 7)、Caspase-9(t=5.198, P=0.007)、PARP(t=19.097, P=0.000 04)及自噬标志指标LC3(t=22.609, P=0.000 02)和Beclin1(t=61.266, P=0.000 000 4)的mRNA量均明显升高。 结论 前列腺癌多西紫杉醇耐药与KSP蛋白表达无关,KSP蛋白靶向抑制剂S(MeO)TLC能够有效抑制多西紫杉醇耐药前列腺癌细胞增殖并诱导其凋亡。在此过程中,内源性和外源性Caspase依赖性的凋亡途径均发挥了重要作用,且自噬可能发挥协同作用。

关键词: 靶向治疗, 有丝分裂驱动蛋白, 多西紫杉醇耐药, 前列腺肿瘤

Abstract: Objective To investigate the therapeutic effect of S(MeO)TLC which targetedly inhibits KSP(Eg5)on docetaxel-resistant prostate cancer in vitro. Methods Docetaxel-resistant PC3 cells(PC3R)were developed by chronic, repeated exposure to docetaxel through gradient culture. IC50 of docetaxel-resistant cells to docetaxel was assessed with MTT assay. KSP expressions of different prostate cancer cell lines(PC3, DU145, PC3R)were examined with Western blotting. The cells were divided into control group, PC3 group and PC3R group, and the anti-proliferative activity of S(MeO)TLC was analyzed with MTT and trypan blue staining. After that, the PC3R cells were divided into 山 东 大 学 学 报 (医 学 版)55卷9期 -董伟,等.靶向抑制有丝分裂驱动蛋白治疗多西紫杉醇耐药前列腺癌的体外疗效 \=-control group and S(MeO)TLC group, and the apoptosis was investigated with Hoechst nuclear staining, flow cytometry and RT-PCR in vitro. Results The expressions of KSP in PC3, DU145, and PC3R were similar, with no statistical difference(P>0.05). There was no significant difference in IC50 between PC3R(120 nmol/L)and PC3(106 nmol/L)(P>0.05). After S(MeO)TLC treatment for 24 hours, 87.9% PC3R cells were in the mitosis phase, most of which went apoptosis after 72 hours of S(MeO)TLC treatment. Compared with the control group, PC3R group had significantly increased expressions of Caspase-3(t=13.445, P=0.000 2), Caspase-8(t=9.494, P=0.000 7), Caspase-9(t=5.198, P=0.007), PARP(t=19.097, P=0.000 04), LC3(t=22.609, P=0.000 02)and Beclin1(t=61.266, P=0.000 000 4). Conclusion The resistance of prostate cancer to docetaxel is not related to KSP expression. S(MeO)TLC, as a new KSP/Eg5 inhibitor, has shown obvious anticancer efficacy in docetaxel-resistant prostate cancer cell lines in vitro by inducing cell apoptosis, in which both endogenous and exogenous caspase-dependent apoptotic pathways play an important role, while autophagy plays a synergistic role.

Key words: Kinesin spindle protein, Docetaxel-resistant, Prostate cancer, Targeted therapy

中图分类号: 

  • R737.25
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30.
[2] 叶定伟, 朱耀. 中国前列腺癌的流行病学概述和启示[J]. 中华外科杂志, 2015, 53(4): 249-252. YE Dingwei, ZHU Yao. Epidemiology of prostate cancer in China: an overview and clinical implication[J]. Chin J Surg, 2015, 53(4): 249-252.
[3] Armstrong AJ, George DJ. Optimizing the use of docetaxel in men with castration-resistant metastatic prostate cancer[J]. Prostate Cancer Prostatic Dis, 2010, 13(2): 108-116.
[4] Beer TM, Pierce WC, Lowe BA, et al. Phase II study of weekly docetaxel in symptomatic androgen-independent prostate cancer[J]. Ann Oncol, 2001, 12(9): 1273-1279.
[5] 韩博, 戚美, 谭薇薇. 去势抵抗性前列腺癌的发生发展机制及药物治疗新进展[J]. 山东大学学报(医学版), 2015, 53(9): 1-7. HAN Bo, QI Mei, TAN Weiwei. Castration-resistant prostate cancer: current understanding of mechanisms and emerging novel agents[J]. Journal of Shandong University(Health Sciences), 2015, 53(9): 1-7.
[6] 萧畔. 多西紫杉醇诱导前列腺癌PC-3细胞凋亡及耐药前后的蛋白质组学研究[D]. 济南: 山东大学, 2012.
[7] Nakai R, Iida S, Takahashi T, et al. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells[J]. Cancer Res, 2009, 69(9): 3901-3909.
[8] Hayashi N, Koller E, Fazli L, et al. Effects of Eg5 knockdown on human prostate cancer xenograft growth and chemosensitivity[J]. Prostate, 2008, 68(12): 1283-1295.
[9] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J].CA Cancer J Clin, 2013, 63(1): 11-30.
[10] Ding S, Nishizawa K, Kobayashi T, et al. A potent chemotherapeutic strategy for bladder cancer:(S)-methoxy-trityl-L-cystein, a novel Eg5 inhibitor[J]. J Urol., 2010, 184(3): 1175-1181.
[11] Xing ND, Ding ST, Saito R, et al. A potent chemotherapeutic strategy in prostate cancer: S-(methoxytrityl)-L-cysteine, a novel Eg5 inhibitor[J]. Asian J Androl, 2011, 13(2): 236-241.
[12] Ding S, Xing N, Lu J, et al. Overexpression of Eg5 predicts unfavorable prognosis in non-muscle invasive bladder urothelial carcinoma[J]. Int J Urol, 2011, 18(6): 432-438.
[13] Sun L, Lu J, Niu Z, et al. A potent chemotherapeutic strategy with Eg5 inhibitor against gemcitabine resistant bladder cancer[J]. PLoS One, 2015, 10(12): e0144484. doi: 10.1371/journal.pone.0144484. eCollection 2015.
[14] 邢乃栋. 新型Eg5靶向抑制剂S-(methoxytrityl)-L-cysteine治疗前列腺癌的实验研究[D].济南: 山东大学, 2012.
[15] 杨美香. 低氧微环境对树突状细胞功能调控及其作用机制的研究[D]. 济南: 山东大学, 2010.
[16] 卢正磊, 任维华, 荚卫东, 等. 驱动蛋白Eg5在肝细胞癌中的表达及其意义[J].安徽医科大学学报, 2012, 47(9): 1091-1094. LU Zhenglei, REN Weihua, JIA Weidong, et al. The expression and significance of kinesin Eg5 in hepatocellular carcinoma[J]. Acta Universitatis Medicinalis Anhui, 2012, 47(9): 1091-1094.
[17] Wallace TJ, Torre T, Grob M, et al. Current approaches, challenges and future directions for monitoring treatment response in prostate cancer[J]. J Cancer, 2014, 5(1): 3-24.
[18] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): 359-386.
[19] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[20] Climent MÁ, León-Mateos L, González Del Alba A, et al. Updated recommendations from the Spanish Oncology Genitourinary Group for the treatment of patients with metastatic castration-resistant prostate cancer[J]. Crit Rev Oncol Hematol, 2015, 96(2): 308-318.
[21] Rao S, He L, Chakravarty S, et al. Characterization of the Taxol binding site on the microtubule. Identification of Arg(282)in beta-tubulin as the site of photo incorporation of a 7-benzophenone analogue of Taxol[J]. J Biol Chem, 1999, 274(53): 37990-37994.
[22] Giannakakou P, Gussio R, Nogales E, et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells[J]. Proc Natl Acad Sci U S A, 2000, 97(6): 2904-2909.
[23] Geney R, Ungureanu M, Li D, et al. Overcoming multidrug resistance in taxane chemotherapy[J]. Clin Chem Lab Med, 2002, 40(9): 918-925.
[24] Mozzetti S, Ferlini C, Concolino P, et al. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients[J]. Clin Cancer Res, 2005, 11(1): 298-305.
[25] Pronk LC, Hilkens PH, van den Bent MJ, et al. Corticosteroid co-medication does not reduce the incidence and severity of neurotoxicity induced by docetaxel[J]. Anticancer Drugs, 1998, 9(9): 759-764.
[26] Daneshmand S, Quek ML, Lin E, et a1. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival[J]. Hum Pathol, 2007, 38(10): 1547-1552.
[27] Ma Y, Miao Y, Peng Z, et al. Identification of mutations, gene expression changes and fusion transcript by whole transcriptome RNAseq in docetaxel resistant prostate cancer cells[J]. Springerplus, 2016, 5(1): 1861.
[28] Sekino Y, Oue N, Shigematsu Y, et al. KIFC1 induces resistance to docetaxel and is associated with survival of patients with prostate cancer[J]. Urol Oncol, 2017, 35(1): e13-31.
[29] Mayer MJ, Klotz LH, Venkateswaran V. The effect of metformin use during docetaxel chemotherapy on prostate cancer specific and overall survival of diabetic patients with castration resistant prostate cancer[J]. J Urol, 2016, 28. pii: S0022-5347(16)31613-5. doi: 10.1016/j.juro.2016.10.069.[Epub ahead of print].
[30] Kapitein LC, Peterman EJ, Kwok BH, et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks[J]. Nature, 2005, 435(7038): 114-118.
[31] Zhu L, Xiao F, Yu Y, et al. KSP inhibitor SB743921 inhibits growth and induces apoptosis of breast cancer cells by regulating p53, Bcl-2, and DTL[J]. Anticancer Drugs, 2016, 27(9): 863-872.
[32] Lu M, Zhu H, Wang X, et al. The prognostic role of Eg5 expression in laryngeal squamous cell carcinoma[J]. Pathology, 2016, 48(3): 214-218.
[33] Wood KW, Cornwell WD, Jackson JR. Past and future of the mitotic spindle as an oncology target[J]. Curr Opin Pharmacol, 2001, 1(4): 370-377.
[34] Purcell JW, Davis J, Reddy M, et al. Activity of the kinesin spindle protein inhibitor ispinesib(SB-715992)in models of breast cancer[J]. Clin Cancer Res, 2010, 16(2): 566-576.
[35] Good JA, Wang F, Rath O, et al. Optimized S-trityl-L-cysteinebased inhibitors of kinesin spindle protein with potent in vivo antitumor activity in lung cancer xenograft models[J]. J Med Chem, 2013, 56(5): 1878-1893.
[1] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[2] 陈安静,张训. 靶向小类泛素化修饰的胶质瘤治疗新策略[J]. 山东大学学报 (医学版), 2020, 1(8): 88-94.
[3] 焉传祝,王伟,纪坤乾,赵玉英. 线粒体与脑疾病[J]. 山东大学学报 (医学版), 2020, 1(8): 34-41.
[4] 赵作辉,李翠玲,王道光,王风芹,曲宏懿,丁森泰,巩晶,吕家驹,杨静华. MnSOD乙酰化对肾透明细胞癌786-O细胞增殖、凋亡的影响[J]. 山东大学学报(医学版), 2017, 55(9): 31-35.
[5] 夏传友,李路超,李孝峰,颜克强, 张念昭,范医东,刘承. 组蛋白甲基化酶SMYD3在前列腺癌组织的表达及对mTOR通路的影响[J]. 山东大学学报(医学版), 2016, 54(5): 12-16.
[6] 韩博, 戚美, 谭薇薇, 杨木易. 去势抵抗性前列腺癌的发生发展机制及药物治疗新进展[J]. 山东大学学报(医学版), 2015, 53(9): 1-7.
[7] 程翔宇, 邢锐, 邢召全, 郭兆新, 郭晓宇, 苏静, 孟力维, 刘照旭. 氯化两面针碱对前列腺癌细胞PC-3增殖与凋亡的影响[J]. 山东大学学报(医学版), 2015, 53(9): 13-18.
[8] 王琛, 唐悦清, 闫磊, 焦伟, 周尊林, 徐忠华. 胰岛素对前列腺癌LNCaP细胞的抑制作用[J]. 山东大学学报(医学版), 2014, 52(7): 22-27.
[9] 张晶1,王林2,3,夏平钿3,秦晓敏4,韩博3,4,郭秀丽1. 二甲双胍抑制人前列腺癌细胞上皮间质转化及其作用机制[J]. 山东大学学报(医学版), 2013, 51(9): 35-39.
[10] 郑懿,蒋伟,金讯波,王慕文,张沂南,夏庆华. 丙戊酸诱导前列腺癌自噬并促进SPARCL1蛋白的表达[J]. 山东大学学报(医学版), 2013, 51(7): 32-35.
[11] 李先哲1,司曼飞1,2,郭艳霞1,苑辉卿1. 抑癌基因PDLIM4在前列腺癌细胞中的差异表达[J]. 山东大学学报(医学版), 2013, 51(06): 34-39.
[12] 戚美1,杨晓庆1,王林1,2,张娟3,王妍3,韩博1,3. ETS基因重排在前列腺癌中的特征分析[J]. 山东大学学报(医学版), 2013, 51(06): 94-99.
[13] 韩博1,3,杨晓庆1,张晶2,刘文君3,刘龙3. SPINK1在前列腺癌中的基础及临床转化研究进展[J]. 山东大学学报(医学版), 2012, 50(8): 40-.
[14] 曾平,王婷. 贝叶斯错误发现率[J]. 山东大学学报(医学版), 2012, 50(3): 120-.
[15] 于春晓1,2,3,金童4,姜安丽5,赵家军1,2,3. 人同源盒基因NKX3.1内含子及5′上游10kb调控区功能的初步分析[J]. 山东大学学报(医学版), 2012, 50(12): 13-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!