您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (7): 43-48.doi: 10.6040/j.issn.1671-7554.0.2017.086

• 基础医学 • 上一篇    下一篇

载pVAX1/Tat PTD-endostatin壳聚糖纳米基因载体的构建与体外活性评价

张新科1,陈洪元2,杨莹1,李妍1,王凤山1   

  1. 1.山东大学药学院, 山东 济南 250012;2.山东大学附属省立医院普外科, 山东 济南 250021
  • 收稿日期:2017-01-20 出版日期:2017-07-10 发布日期:2017-07-10
  • 通讯作者: 张新科. E-mail:zhangxinke@sdu.edu.cn E-mail:zhangxinke@sdu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金(81302686);山东省重点研发计划(2016GSF201083)

Development and evaluation of chitosan gene nanoparticles loaded with recombinant plasmid pVAX1/Tat PTD-endostatin

ZHANG Xinke1, CHEN Hongyuan2, YANG Ying1, LI Yan1, WANG Fengshan1   

  1. 1. School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China;
    2. Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
  • Received:2017-01-20 Online:2017-07-10 Published:2017-07-10

摘要: 目的 构建载内皮抑素(Es)重组表达质粒的壳聚糖纳米基因载体并评价其抑制内皮细胞增殖的活性。 方法 选用真核表达质粒pVAX1为重组载体,采用PCR及双酶切法制备能够表达Tat PTD-Es融合蛋白的真核表达载体pVAX1/Tat PTD-Es;离子交联法制备壳聚糖载基因纳米粒,琼脂糖凝胶电泳筛选处方,检测纳米粒的形态、Zeta电位及粒径;采用最佳处方比例制备载重组质粒纳米载体,转染人脐静脉内皮细胞HUVEC,采用ELISA法测定分泌型Tat PTD-Es蛋白的表达量,CCK-8法测定对HUVEC的抑制作用,以上两个实验均以LipofectaminTM2000为阳性对照。 结果 pVAX1/Tat PTD-Es的真核表达载体构建成功,壳聚糖纳米粒Zeta电位(14.3±1.6)mV,粒径(145±12)nm,纳米粒转染HUVEC后细胞上清中Tat PTD-Es的浓度为(182.5±16.3)ng/mL,壳聚糖基因载体转染HUVEC后对细胞有明显的抑制作用,72 h的抑制率达(53.4±5.4)%(Z=-2.611, P=0.008)。结论 构建的壳聚糖纳米基因载体能够成功转染HUVEC并能明显地抑制内皮细胞的增殖。

关键词: Tat PTD-内皮抑素, 壳聚糖, 基因治疗, 纳米基因载体

Abstract: Objective To develop chitosan gene nanoparticles loaded with recombinant plasmid which contains endostatin(Es)gene and evaluate its in vitro inhibitory effects on HUVEC cells. Methods pVAX1 was taken as the expression vector. PCR combined with double restriction enzyme digest method was used to construct recombinant plasmids pVAX1/Tat PTD-Es. Chitosan nanoparticles loaded with plasmids were prepared by ion cross-linking method. Agarose gel electrophoresis experiment was employed to screen the best prescription of nanoparticles. The shape, Zeta potential and size distribution of nanoparticles were evaluated. After nanoparticles were transferred into HUVEC cells, ELISA method was used to detect the expression of Tat PTD-Es, and CCK-8 was explored to determine the inhibitory effect on HUVEC. In ELISA and CCK-8 experiments, LipofectamineTM2000 loaded with pVAX1/Tat PTD-Es was used as positive control. Results The recombinant plasmid pVAX1/Tat PTD-Es was constructed successfully. The Zeta potential of chitosan nanoparticles loaded with recombinant plasmid was(14.3±1.6)mV, the size distribution was(145±12)nm. The concentration of Tat PTD-Es in HUVEC supernatant was(182.5±16.3)ng/mL. CCK-8 results showed that chitosan nanoparticles loaded with pVAX1/Tat PTD-Es had inhibitory effects on HUVEC cells and the inhibitory rate 山 东 大 学 学 报 (医 学 版)55卷7期 -张新科,等.载pVAX1/Tat PTD-endostatin壳聚糖纳米基因载体的构建与体外活性评价 \=-in 72 h was(53.4±5.4)%(Z=-2.611, P=0.008). Conclusion Chitosan nanoparticles loaded with recombinant plasmid pVAX1/Tat PTD-Es can be transferred into HUVEC cells, and have distinct inhibitory effects on the proliferation of HUVEC cells.

Key words: Tat PTD-endostatin, Gene nanoparticle, Chitosan, Gene therapy

中图分类号: 

  • R318.08
[1] OReilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth[J]. Cell, 1997, 88(2): 277-285.
[2] 王晓燕, 袁中芳, 魏增涛, 等. 重组IFN-l蛋白联合endostatin基因对碱烧伤诱导角膜新生血管的抑制作用[J]. 基础医学与临床, 2005, 25(12): 1119-1123. WANG Xiaoyan, YUAN Zhongfang, WEI Zengtao, et al. Inhibitory effect of recombinant IFN-α combined with endostatin gene on corneal neovascurization induced by alkaili burn[J]. Basic and Clinical Medicine, 2005, 25(12): 1119-1123.
[3] Mohajeri A, Pilehvar-Soltanahmadi Y, Pourhassan-Moghaddam M, et al. Cloning and expression of recombinant human endostatin in periplasm of Escherichia coli expression system[J]. Adv Pharm Bull, 2016, 6(2): 187-194.
[4] Tan H, Yang S, Feng Y, et al. Characterization and secondary structure analysis of endostatin covalently modified by polyethylene glycol and low molecular weight heparin[J]. J Biochem, 2008, 144(2): 207-213.
[5] Fu W, Zhuo J, and Hu L. Differential effects of recombinant human endostatin treatment on differentiated and undifferentiated blood vessels in Lewis lung cancer[J]. Oncol Lett, 2017, 13(1): 196-200.
[6] Zhang X, Li Y, Cheng Y, et al. Tat PTD-endostatin: a novel anti-angiogenesis protein with ocular barrier permeability via eye-drops[J]. Biochim Biophys Acta, 2015, 1850(6): 1140-1149.
[7] Li Y, Li L, Li Z, et al. Tat PTD-Endostatin-RGD: a novel protein with anti-angiogenesis effect in retina via eye drops[J]. Biochim Biophys Acta, 2016, 1860(10): 2137-2147.
[8] 张新科. 穿膜肽Tat PTD介导的内皮抑素穿透眼球屏障及对眼部血管增生抑制作用的研究[D]. 济南:山东大学,2012. ZHANG Xinke. Study on the penetration of eye barrier and inhibition of ocular angiogenesis of endostatin with the mediation of Tat PTD[D]. Jinan: Shandong University, 2012.
[9] Campochiaro PA, Lauer AK, Sohn EH, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration(GEM)study[J]. Hum Gene Ther, 2017, 28(1): 99-111.
[10] Ojea-Jiménez I, Tort O,Lorenzo J, et al. Engineered nonviral nanocarriers for intracellular gene delivery applications[J]. Biomed Mater, 2012, 7(5): 054106. doi:10.1088/1748-6041/7/5/054106.
[11] Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers[J]. Int J Nanomedicine, 2011,(6): 765-774.
[12] Veilleux D, Nelea M, Biniecki K, et al. Preparation of concentrated chitosan/DNA nanoparticle formulations by lyophilization for gene delivery at clinically relevant dosages[J]. J Pharm Sci, 2016, 105(1): 88-96.
[13] Ramesan RM, Sharma CP. Modification of chitosan nanoparticles for improved gene delivery[J]. Nanomedicine, 2012, 7(1): 5-8.
[14] 姚金凤, 郭晨阳,杨红,等. 壳聚糖纳米粒在药物输送中的应用研究进展[J]. 国际药学研究杂志, 2013, 40(1): 90-94. YAO Jinfeng, GUO Chenyang, YANG Hong, et al. Application of chitosan nanoparicles for drug delivery: research advances[J]. J Int Pharm Res, 2013, 40(1): 90-94.
[15] Babu A, Ramesh R. Multifaceted applications of chitosan in cancer drug delivery and therapy[J]. Mar Drugs, 2017, 15(4): 96-104.
[16] Zhang X, Yang X, Ji J, et al. Tumor targeting strategies for chitosan-based nanoparticles[J]. Colloids Surf B Biointerfaces, 2016, 148(1): 460-473.
[17] Key J, Park K. Multicomponent, tumor-homing chitosan nanoparticles for cancer imaging and therapy[J]. Int J Mol Sci, 2017, 18(3): 594-612.
[18] Jung SP, Siegrist B, Hornick CA, et al. Effect of human recombinant endostatin protein on human angiogenesis[J]. Angiogenesis, 2002, 5(1-2): 111-118.
[19] Chen J, Liu DG, Yang G, et al. Endostar, a novel human recombinant endostatin, attenuates liver fibrosis in CCl4-induced mice[J]. Exp Biol Med, 2014, 239(8): 998-1006.
[20] Ling Y, Yang Y, Lu N, et al. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells[J]. Biochem Biophys Res Commun, 2007, 361(1): 79-84.
[21] Xing P, Zhang J, Yan Z, et al. Recombined humanized endostatin(Endostar)combined with chemotherapy for advanced bone and soft tissue sarcomas in stage IV[J]. Oncotarget, 2017, 8(22): 36716-36727.
[22] Wigler M, Silverstein S, Lee LS, et al. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells[J]. Cell, 1977, 11(1): 223-232.
[23] 张艳, 马春红,孙汶生, 等. 高生物安全性人内皮抑素载体抑瘤作用的研究[J]. 中国现代普通外科进展, 2004, 7(6): 350-355. ZHANG Yan, MA Chunhong, SUN Wensheng, et al. The antitumor effect of the high bio-safety vector containing human endosatin[J]. Chin J Curr Adv Gen Surg, 2004, 7(6): 350-355.
[24] Petkar KC, Chavhan SS, Agatonovik-Kustrin S, et al. Nanostructured materials in drug and gene delivery: a review of the state of the art[J]. Crit Rev Ther Drug Carrier Syst, 2011, 28(2): 101-164.
[25] Rezaee M, Oskuee RK, Nassirli H, et al. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems[J]. J Control Release, 2016, 236(1): 1-14.
[26] Jain AK, Massey A, Yusuf H, et al. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery[J]. Int J Nanomedicine, 2015, 10(1): 7183-7196.
[1] 孙玉卿,李文涛,刘康,赵立民,张维芬. 黄芪多糖/壳聚糖缓释微球对大鼠变应性鼻炎的治疗作用[J]. 山东大学学报(医学版), 2017, 55(9): 60-65.
[2] 王思,李秀华,杜鹃,岳龙涛,王瑶,刘菲,郭配. 侧脑室注射腺病毒介导的GDNF基因对帕金森病的保护作用[J]. 山东大学学报(医学版), 2016, 54(4): 32-36.
[3] 张锋, 戴杰, 任灵飞, 蒋颂瑶, 施更生. 纯钛钛片表面不同生物大分子涂层的比较研究[J]. 山东大学学报(医学版), 2015, 53(8): 38-43.
[4] 安祥莲, 郭泾. 复合CMC脱细胞真皮基质的抗菌性能[J]. 山东大学学报(医学版), 2015, 53(8): 32-37.
[5] 刘学蔚1,侯绪浩2,陈怡憓1,孙钦峰1,彭凤梅3. 正交优化白及多糖复合支架材料的实验研究[J]. 山东大学学报(医学版), 2014, 52(3): 40-44.
[6] 张斌1,陈杰2,刘雁3,张士宝2,刘双庆2,刘波2,王全颖4,杨广笑4,刘庆勇2. 分泌表达肾癌抑制融合肽的重组腺伴随病毒对肾癌移植瘤的疗效[J]. 山东大学学报(医学版), 2013, 51(5): 33-36.
[7] 孙燕来1,宋希林2,唐鲁兵3,王斌1,张毅1. BRMS1基因对人直肠癌裸鼠成瘤性及转移能力的影响[J]. 山东大学学报(医学版), 2012, 50(9): 25-.
[8] 于张健1,张士宝1,刘庆勇1,阮喜云2,杨广笑3,王全颖3. SAC重组腺相关病毒载体的构建及其对前列腺癌CAM移植瘤的抑制作用[J]. 山东大学学报(医学版), 2012, 50(7): 41-.
[9] 王小平,张瑞斌,朱彬,高庆贞,靖永胜,任万军,王璞,王琪. MHC-Ⅰ细胞内抗体重组腺相关病毒载体的构建[J]. 山东大学学报(医学版), 2012, 50(12): 37-.
[10] 侯文霞,孟庆慧,吴婧琳,刘敏,郭鹤. 壳聚糖磷脂酰胆碱对AD大鼠脑内PKC-δ及Iba1表达的影响[J]. 山东大学学报(医学版), 2012, 50(10): 37-.
[11] 徐旭东. 多孔性壳聚糖-胶原材料促进神经纤维生长的实验研究[J]. 山东大学学报(医学版), 2011, 49(8): 45-47.
[12] 梁杰1,崔军1,孙康宁2,徐欣1,3. 壳聚糖温敏凝胶引导组织再生膜的制备及其细胞生物相容性[J]. 山东大学学报(医学版), 2011, 49(6): 80-.
[13] 张文华,吴承远,李新钢,徐淑军,李刚,江玉泉,周茂德,刘猛. 人胶质细胞源性神经营养因子在肌萎缩性脊髓侧索硬化症小鼠模型基因治疗中的作用[J]. 山东大学学报(医学版), 2011, 49(11): 25-29.
[14] 张凤伟1, 吴树明2, 曹广庆2, 陆现硕2. eNOS基因转染治疗兔肺动脉高压及肺动脉高压危象[J]. 山东大学学报(医学版), 2010, 48(9): 19-24.
[15] 崔军1,徐欣1,2,马跃1,董鹏飞3,刘刚利1,文勇1. 羧甲基壳聚糖钙与骨髓基质细胞生物相容性的初步实验[J]. 山东大学学报(医学版), 2010, 48(6): 57-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!