您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (11): 1-6.doi: 10.6040/j.issn.1671-7554.0.2016.835

• 前沿进展 •    下一篇

CAR-T抗肿瘤研究的现状及展望

郑敏1,2,3,张岚1,2,3   

  1. 中山大学 1.肿瘤防治中心妇瘤科;2.华南肿瘤学国家重点实验室;3.肿瘤医学协同创新中心, 广东 广州 510060
  • 收稿日期:2016-07-02 出版日期:2016-11-10 发布日期:2016-11-10
  • 通讯作者: 郑敏. E-mail:zhengmin@sysucc.org.cn E-mail:zhengmin@sysucc.org.cn
  • 基金资助:
    国家自然科学基金(81372275);广东省省级科技计划(2016A020215080)

Current situation and development trend of CAR-T in anti-tumor research

ZHENG Min1,2,3, ZHANG Lan1,2,3   

  1. 1. Department of Gynecology, Cancer Center;
    2. State Key Laboratory of Oncology in South China;
    3. Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China
  • Received:2016-07-02 Online:2016-11-10 Published:2016-11-10

摘要: 嵌合抗原受体修饰的T细胞(CAR-T)是一种安全有效的肿瘤治疗策略。在多种血液肿瘤的临床试验中,CAR-T细胞疗法取得重大突破,在实体瘤的临床试验中也崭露头角。但在获得显著疗效的同时,CAR-T也存在脱靶效应、细胞因子风暴、插入突变、对实体肿瘤疗效有限等问题。现就CAR-T技术的最新进展及该领域有待解决的问题进行综述,为CAR-T疗法的进一步研究和临床应用提供参考。

关键词: 嵌合抗原受体, 嵌合抗原受体修饰的T细胞, 肿瘤, 免疫治疗

Abstract: A lot of remarkable results suggested that the modification of T-cells with CARs(CRA-T)could be a powerful approach for developing safe and effective cancer therapeutics. A novel breakthrough has been made in CAR-T treatment of hematologic tumors and therapeutic potential in clinical studies of solid tumors has been achieved, although there are still many problems for CAR-T on the clinical application such as off-target effects, cytokine storm, insertion mutagenesis, limited effects for solid tumors. Here, we reviewed the recent advances of CAR-T and problems that need to be solved in this field, which provide references for the in-depth study and further clinical immunotherapy.

Key words: Tumor, Immunotherapy, Chimeric antigen receptor, Chimeric antigen receptor T cells

中图分类号: 

  • R730
[1] Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy[J]. Clin Cancer Res, 2011, 17(13):4550-4557.
[2] Spear P, Barber A, Rynda-Apple A, et al. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-gamma and GM-CSF[J]. J Immunol, 2012, 188(12):6389-6398.
[3] Eshhar Z, Waks T, Bendavid A, et al. Functional expression of chimeric receptor genes in human T cells[J]. J Immunol Methods, 2001, 248(1-2):67-76.
[4] Pule MA, Straathof KC, Dotti G, et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells[J]. Mol Ther, 2005, 12(5):933-941.
[5] Jensen MC, Riddell SR. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells[J]. Immunol Rev, 2014, 257(1):127-144.
[6] Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains[J]. Proc Natl Acad Sci U S A, 2009, 106(9):3360-3365.
[7] Chmielewski M, Kopecky C, Hombach AA, et al. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression[J]. Cancer Res, 2011, 71(17):5697-5706.
[8] Zhao Z, Condomines M, van der Stegen SJ, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T Cells[J]. Cancer Cell, 2015, 28(4):415-428.
[9] Xu Y, Zhang M, Ramos CA, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15[J]. Blood, 2014, 123(24):3750-3759.
[10] Dudley ME, Gross CA, Somerville RP, et al. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma[J]. J Clin Oncol, 2013, 31(17):2152-2159.
[11] Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2[J]. Mol Ther, 2010, 18(4):843-851.
[12] Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19[J]. Blood, 2010, 116(20):4099-4102.
[13] Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med, 2014, 371(16):1507-1517.
[14] Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia[J]. Sci Transl Med, 2015, 7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
[15] Garfall AL, Maus MV, Hwang WT, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma[J]. N Engl J Med, 2015, 373(11):1040-1047.
[16] Ritchie DS, Neeson PJ, Khot A, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia[J]. Mol Ther, 2013, 21(11):2122-2129.
[17] Wang QS, Wang Y, Lv HY, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia[J]. Mol Ther, 2015, 23(1):184-191.
[18] Dai H, Wang Y, Lu X, et al. Chimeric antigen receptors modified T-cells for cancer therapy[J]. J Natl Cancer Inst, 2016, 108(7). pii: djv439. doi: 10.1093/jnci/djv439.
[19] 克晓燕. 嵌合抗原受体-T细胞免疫治疗在血液系统恶性肿瘤中的应用进展[J].中国全科医学, 2016, 19(12):1361-1366. KE Xiaoyan. Application of CAR-T cell immunotherapy in the treatment of hematological malignancy[J]. Chinese General Practice, 2016, 19(12):1361-1366.
[20] Moon EK, Wang LC, Dolfi DV, et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors[J]. Clin Cancer Res, 2014, 20(16):4262-4273.
[21] Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer[J]. Clin Cancer Res, 2006, 12(20 Pt1):6106-6115.
[22] Koneru M, Purdon TJ, Spriggs D, et al. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors[J]. Oncoimmunology, 2015, 4(3):e994446. eCollection 2015.
[23] Koneru M, OCearbhaill R, Pendharkar S, et al. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto)directed chimeric antigen receptors for recurrent ovarian cancer[J]. J Transl Med, 2015, 13:102. doi: 10.1186/s12967-015-0460-x.
[24] Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T cells to solid tumors[J]. Cancer Discov, 2016, 6(2):133-146.
[25] Sun M, Shi H, Liu C, et al. Construction and evaluation of a novel humanized HER2-specific chimeric receptor[J]. Breast Cancer Res, 2014, 16(3):R61. doi: 10.1186/bcr3674.
[26] Hong H, Brown CE, Ostberg JR, et al. L1 Cell adhesion molecule-specific chimeric antigen receptor-redirected human T cells exhibit specific and efficient antitumor activity against human ovarian cancer in mice[J]. PLoS One, 2016, 11(1):e0146885. doi: 10.1371/journal.pone.0146885. eCollection 2016.
[27] Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma[J]. Blood, 2011, 118(23):6050-6056.
[28] Ahmed N, Brawley VS, Hegde M, et al. Human epidermal growth factor receptor 2(HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma[J]. J Clin Oncol, 2015, 33(15):1688-1696.
[29] Grada Z, Hegde M, Byrd T, et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy[J]. Mol Ther Nucleic Acids, 2013, 2:e105. doi: 10.1038/mtna.2013.32.
[30] Wilkie S, van Schalkwyk MC, Hobbs S, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling[J]. J Clin Immunol, 2012, 32(5):1059-1070.
[31] Kakarla S, Chow KK, Mata M, et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma[J]. Mol Ther, 2013, 21(8):1611-1620.
[32] 章浩,叶真龙,钱其军. 降低亲和力提高HER2-CAR-T细胞治疗的安全性[J].药学实践杂志, 2016, 34(3):261-266. ZHANG Hao, YE Zhenlong, QIAN Qijun. Decreasing affinity of CAR-T cells targeting HER2 to increase the therapeutic outcome against tumors[J]. Journal of Pharmaceutical Practice, 2016, 34(3):261-266.
[33] Maude SL, Barrett D, Teachey DT, et al. Managing cytokine release syndrome associated with novel T cell-engaging therapies[J]. Cancer J, 2014, 20(2):119-122.
[34] Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor[J]. Science, 2015, 350(6258):aab4077. doi: 10.1126/science.aab4077.
[35] Di Stasi A, De Angelis B, Rooney CM, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model[J]. Blood, 2009, 113(25):6392-6402.
[36] Craddock JA, Lu A, Bear A, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b[J]. J Immunother, 2010, 33(8):780-788.
[37] Beatty GL, Winograd R, Evans RA, et al. Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6C(low)F4/80(+)extratumoral macrophages[J]. Gastroenterology, 2015, 149(1):201-210.
[38] Yao X, Ahmadzadeh M, Lu YC, et al. Levels of peripheral CD4(+)FoxP3(+)regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer[J]. Blood, 2012, 119(24):5688-5696.
[39] John LB, Devaud C, Duong CP, et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells[J]. Clin Cancer Res, 2013, 19(20):5636-5646.
[40] Cheadle EJ, Gornall H, Baldan V, et al. CAR T cells: driving the road from the laboratory to the clinic[J]. Immunol Rev, 2014, 257(1):91-106.
[1] 王伟 王沂峰 张岭梅 林琼燕 黄菊. 人卵巢癌OVCAR3细胞系中侧群细胞的分离及其成瘤性、侵袭性的实验研究[J]. 山东大学学报(医学版), 2209, 47(6): 8-11.
[2] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[3] 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61.
[4] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[5] 黄方 康瑞 吴春林. VEGFC、NF-κBp65及Survivin在鼻咽癌中的表达及临床意义[J]. 山东大学学报(医学版), 2209, 47(6): 83-.
[6] 白洁,刘玥,张宁宁,温洋,彭芸,程华. 中枢神经肿瘤样脱髓鞘病2例[J]. 山东大学学报 (医学版), 2020, 1(9): 103-105.
[7] 王稳,董绍华,田翔宇,崔秀娟. 盆腹腔多发脾种植误诊为妇科肿瘤1例[J]. 山东大学学报 (医学版), 2020, 1(9): 116-118.
[8] 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73.
[9] 王剑,周文婧,薛知易,刘晓菲. 脑胶质母细胞瘤模型研究概况及类脑模型的研发应用[J]. 山东大学学报 (医学版), 2020, 1(8): 74-80.
[10] 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73.
[11] 路璐,孙志钢,张楠. 继发性嗜血细胞综合征1例[J]. 山东大学学报 (医学版), 2020, 1(7): 122-124.
[12] 董伟,邢乃栋,吕家驹,刘帅,孙亮,曹庆伟,董宇昊,刘钊,丁森泰. 靶向抑制有丝分裂驱动蛋白治疗多西紫杉醇耐药前列腺癌的体外疗效[J]. 山东大学学报(医学版), 2017, 55(9): 23-30.
[13] 底学敏,牛书雷,赵静,杜随,于慧敏,张宏涛,王娟. CT引导下125I粒子植入治疗晚期胃癌淋巴结转移[J]. 山东大学学报(医学版), 2017, 55(9): 79-84.
[14] 黄竹青,吴雪韦,任冬梅. 槲寄生中酚类化学成分的分离鉴定及其对A549细胞的增殖抑制活性[J]. 山东大学学报(医学版), 2017, 55(8): 35-41.
[15] 殷雷,殷睿,李文佳,刘帅,吕家驹. CYLD抑制自噬提高膀胱癌细胞吉西他滨化疗敏感性[J]. 山东大学学报(医学版), 2017, 55(8): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!