山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (8): 17-21.doi: 10.6040/j.issn.1671-7554.0.2015.1031
牛纪媛1,王方利2,张瑞斌3,高庆贞3,贠萍3,王琪3,张珊3,白雪4,王小平3
NIU Jiyuan1, WANG Fangli2, ZHANG Ruibin3, GAO Qingzhen3, YUN Ping3, WANG Qi3, ZHANG Shan3, BAI Xue4, WANG Xiaoping3
摘要: 目的 建立兔颈总动脉-颈内静脉内瘘模型;探讨血管外膜涂层缓释西罗莫司对内膜增生的影响。 方法 健康雄性新西兰大耳白兔18只,随机分为对照组、F-127组和F-127+西罗莫司组,每组6只,将兔颈总动脉与颈内静脉端吻合,建立内瘘模型后,按组别在吻合口进行不同处理:对照组,不给予任何处理;F-127组,涂抹20% pluronic F-127多聚凝胶0.5 mL;F-127+西罗莫司组,涂抹携带西罗莫司0.5 mg的20% pluronic F-127多聚凝胶0.5 mL。术后3周,获取近吻合口处静脉血管,采用苏木精-伊红染色法观察静脉内膜增生情况,测量静脉血管内膜厚度。采用免疫组织化学法及Western blotting法检测各组转化生长因子β1(TGF-β1)和结缔组织生长因子(CTGF)的表达。 结果 术后3周,对照组和F-127组较F-127+西罗莫司组血管内膜增生明显(P<0.05);对照组和F-127组较F-127+西罗莫司组TGF-β1和CTGF表达明显升高(P<0.05),对照组与F-127组之间差异无统计学意义(P>0.05)。 结论 西罗莫司血管外膜涂层缓释可有效抑制内瘘血管内膜的增生;西罗莫司可通过抑制TGF-β1和CTGF的表达来抑制血管内膜纤维化过程。
中图分类号:
[1] Gh K, Mhs M, H R, et al. Primary patency rate of native AV fistula: long term follow up[J]. Int J Clin Exp Med, 2012, 5(2): 173-178. [2] Yamaji K, Natsuaki M, Morimoto T, et al. Long-term outcomes after coronary stent implantation in patients presenting with versus without acute myocardial infarction(an observation from coronary revascularization demonstrating outcome study-Kyoto registry cohort-2)[J]. Am J Cardiol, 2015, 116(1): 15-23. [3] Suzuki N, Angiolillo DJ, Tannenbaum MA, et al. Strategies for drug-eluting stent treatment of bifurcation coronary artery disease in the United States: insights from the e-Cypher S.T.L.L.R.trial[J]. Catheter Cardiovasc Interv, 2009, 73(7): 890-897. [4] Kim YO, Choi YJ, Kim JI, et al. The impact of intima-media thickness of radial artery on early failure of radiocephalic arteriovenous fistula in hemodialysis patients[J]. J Korean Med Sci, 2006, 21(2): 284-289. [5] Dixon BS. Why dont fistulas mature?[J]. Kidney Int, 2006, 70(8): 1413-1422. [6] Liu BC, Li L, Gao M, et al. Microinflammation is involved in the dysfunction of arteriovenous fistula in patients with maintenance hemodialysis[J]. Chin Med J, 2008, 121(21): 2157-2161. [7] Ikegaya N, Yamamoto T, Takeshita A, et al. Elevated erythropoietin receptor and transforming growth factorβ1 expression in stenotic AV fistulae used for hemodialysis[J]. J Am Soc Nephrol, 2000, 11(5): 928-935. [8] Kanzaki T, Tamura K, Takahashi K, et al. In vivo effect of TGF-beta1. Enhanced intimal thickening by administration of TGF-beta 1 in rabbit arteries injured with a balloon catheter[J]. Arterioscler Thromb Vasc Biol, 1995, 15(11): 1951-1957. [9] Wolf YG, Rasmussen LM, Ruoslahti E. Antibodies against transforming growth factor-beta 1 suppress intimal hyperplasia in a rat model[J]. J Clin Invest, 1994, 93(3): 1172-1178. [10] Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system[J]. EMBO J, 2000, 19(8): 1745-1754. [11] Rossing P. Diabetic nephropathy: Worldwide epidemic and effects of current treatment on natural history[J]. Curr Diab Rep, 2006, 6(6): 479-483. [12] Peng YH, Coumar MS, Leou JS, et al. Structural basis for the improved potency of peroxisome proliferator-activated receptor(PPAR)agonists[J]. Chem Med Chem, 2010, 5(10): 1707-1716. [13] Lemos PA, Serruys PW, Van-domburg RT, et al. Unrestricted utilization of sirolmus-eluting stents compared with conventional bare stent implantation in the “real world”: the rapamycin-eluting stent evaluated at rotterdam cardiology hospital(research)registry[J]. Circulation, 2004, 109(2): 190-195. [14] Ruygrok PN, Muller DW, Serruys PW. Rapamycin in cardiovascular medicine[J]. Intern Med J, 2003, 33(3): 103-109. [15] Shi Y, O'Brien JE, Fard A, et al. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries[J]. Circulation, 1996, 94(7): 1655-1664. [16] Yu X, Takayama T, Goel SA, et al. A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia[J]. J Controlled Release, 2014, 191(10): 47-53. [17] Mehilli J, Byrne BA, Wieczorek A, et al. Randomized trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis[J]. Eur Heart, 2008, 29(16): 1975-1982. |
[1] | 刘振中, 姜笃银, 王魏, 宗宪磊, 张基勋, 刘磊. 转化生长因子-β1噬菌体模拟肽促进成纤维细胞增殖的效果[J]. 山东大学学报(医学版), 2015, 53(3): 50-55. |
[2] | 王玮1,李鲁杨2,孟晓慧1. 甘草酸二胺联合前列地尔对大鼠 肾间质纤维化的影响[J]. 山东大学学报(医学版), 2012, 50(9): 29-. |
[3] | 林梅1,王一彪1,苏宏1,马宇1,索琳1,陈鸥2,朱晓波3. Smad信号通路及CTGF在依那普利抑制高肺血流性肺动脉高压形成中的作用机制[J]. 山东大学学报(医学版), 2011, 49(9): 16-. |
[4] | 李学刚,刘海英,柳刚,孙云,李娟,关广聚. 高糖环境对人肾小球系膜细胞表达结缔组织生长因子及其受体蛋白的影响[J]. 山东大学学报(医学版), 2011, 49(6): 99-. |
[5] | 吕怡静,任敏,王博,葛汝青,张继东. EZH2和CTGF在肺腺癌中的表达和意义[J]. 山东大学学报(医学版), 2011, 49(5): 94-97. |
[6] | 吕怡静,任敏,王博,葛汝青,张继东. EZH2和CTGF在肾透明细胞癌中的表达及其临床意义[J]. 山东大学学报(医学版), 2011, 49(3): 85-89. |
[7] | 吕怡静,任敏,王博,葛汝青,张继东. EZH2和CTGF在肾透明细胞癌中的表达及其临床意义[J]. 山东大学学报(医学版), 2011, 49(3): 85-89. |
[8] | 高蕾,张林娜,王红. 结缔组织生长因子在红色闪烁光诱导豚鼠近视眼巩膜内的表达[J]. 山东大学学报(医学版), 2010, 48(6): 72-75. |
[9] | 吴守彩,高海青,李小利,李保应,李宪花,尹梅. 通心络对糖尿病肾病大鼠肾脏CTGF、BMP-7的影响[J]. 山东大学学报(医学版), 2010, 48(3): 7-11. |
[10] | 苏宏1,王一彪1,马宇1,朱晓波1,2,王进3,陈鸥4,冯晓丽1. 高肺血流性肺动脉高压大鼠中CTGF表达及法舒地尔的干预作用[J]. 山东大学学报(医学版), 2010, 48(2): 23-27. |
[11] | 于颖 司国民 赵宝. 益气活血汤对慢性肾功能衰竭大鼠CTGF、PDGF-B的影响[J]. 山东大学学报(医学版), 2009, 47(5): 54-58. |
[12] | . 内皮祖细胞与雌激素联合应用防止PCI术后再狭窄的研究[J]. 山东大学学报(医学版), 2009, 47(10): 39-44. |
[13] | 贾晓妍,许冬梅,张成银,张慧. 结缔组织生长因子和低氧诱导因子-1α在大鼠慢性马兜铃酸肾病模型肾小管间质中的表达[J]. 山东大学学报(医学版), 2008, 46(3): 268-271. |
[14] | 高髻云,张伟 . 羊膜匀浆液对兔小梁切除术后滤过泡及TGFβ1、CTGF表达的影响[J]. 山东大学学报(医学版), 2008, 46(2): 163-166. |
[15] | 主余华,李肖红,张春清,任万华,赵幼安,马艳丽 . CTGF shRNA对肝星状细胞细胞因子及细胞外基质表达的影响[J]. 山东大学学报(医学版), 2007, 45(6): 577-581. |
|