您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (2): 53-56.doi: 10.6040/j.issn.1671-7554.0.2015.743

• • 上一篇    下一篇

波生坦治疗婴儿先心病合并肺动脉高压的临床观察

潘艳艳1,2,孙永超3,赵翠芬1,孔清玉1   

  1. 1.山东大学齐鲁医院儿科, 山东 济南 250012;2.山东大学齐鲁儿童医院儿科, 山东 济南 250022;3.济南护理职业学院护理系, 山东 济南 250203
  • 收稿日期:2015-08-06 出版日期:2016-02-10 发布日期:2016-02-10
  • 通讯作者: 赵翠芬. E-mail:zhaocuifen@sdu.edu.cn E-mail:zhaocuifen@sdu.edu.cn
  • 基金资助:
    山东省科技发展计划(2014GSF118066)

Clinical efficacy of bosentan in the treatment of babies with congenital heart disease complicated with pulmonary hypertension

PAN Yanyan1,2, SUN Yongchao3, ZHAO Cuifen1, KONG Qingyu1   

  1. 1. Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Pediatrics, Qilu Childrens Hospital of Shandong University, Jinan 250022, Shandong, China;
    3. Nursing Faculty, Jinan Vocational College of Nursing, Jinan 250203, Shandong, China
  • Received:2015-08-06 Online:2016-02-10 Published:2016-02-10

摘要: 目的 探讨波生坦治疗3月龄以下小婴儿先天性心脏病相关性肺动脉高压(CHD-PAH)有效性及安全性。 方法 选择2012年1月至2013年12月在山东大学齐鲁医院和齐鲁儿童医院治疗的3月龄以下CHD-PAH患儿60例,随机分为波生坦组和卡托普利组,每组30例;同期选择年龄3个月以下健康查体婴儿30例(正常对照组)。采用ELISA法、超声心动图检测波生坦组、卡托普利组和对照组治疗前、治疗后4、8周血浆内皮素-1(ET-1)水平及平均肺动脉压(mPAP)的变化;检测波生坦组和卡托普利组治疗前、后肝酶变化;通过60 mL奶液喂养时间的变化评估患儿运动耐量。 结果 波生坦组和卡托普利组治疗前血浆ET-1含量、mPAP较正常对照组明显升高(P<0.05 );波生坦组治疗后4、8周 mPAP及血浆ET-1水平较治疗前明显下降(P<0.01),卡托普利组治疗后 mPAP较治疗前下降(P<0.05),血浆ET-1水平无明显变化;波生坦组与卡托普利组治疗后4、8周血浆ET-1含量及mPAP比较明显下降(P<0.05);波生坦组治疗前后肝酶差异无统计学意义(P>0.05);波生坦组治疗后4周60 mL奶液喂养时间较治疗前明显缩短(P<0.01)。 结论 波生坦可有效降低先心病患儿平均肺动脉压,提高运动耐量。短期应用波生坦治疗小婴儿先天性心脏病相关性肺动脉高压安全、有效。

关键词: 波生坦, 婴儿, 先天性心脏病, 肺动脉高压, 内皮素-1

Abstract: Objectives To explore the efficacy and safety of bosentan in the treatment of infants(<3 months)with congenital heart disease complicated with pulmonary hypertension(CHD-PAH). Methods A total of 60 CHD-PAH infants treated in Qilu Hospital of Shandong University and Qilu Childrens Hospital during Jan. 2012 and Dec. 2013 were selected as the observation group and subdivided into bosentan group(n=30)and captopril group(n=30), another 30 healthy infants served as the control group. Endothelin-1(ET-1)and mean pulmonary arterial pressure(mPAP)before treatment, 4 and 8 weeks after treatment were measured with ELISA and echocardiography(UCG)in all infants. Changes of liver enzymes were measured before and after the treatment, and exercise tolerance was evaluated by observing the time changes of feeding 60 mL milk for babies in the observation group. Results ET-1 and mPAP were significantly higher in the observation group than in the control group(P<0.05). ET-1 and mPAP 4 and 8 weeks after bosentan treatment decreased significantly compared to the basement levels(P<0.01). MPAP after captopril treatment declined compared with the control group(P<0.05), while there was no statistical difference in ET-1 concentrations. ET-1 and mPAP in 山 东 大 学 学 报 (医 学 版)54卷2期 -潘艳艳,等.波生坦治疗婴儿先心病合并肺动脉高压的临床观察 \=-the bosentan treatment group decreased significantly compared with those of the captopril group 4 weeks and 8 weeks after treatment(P<0.05). There was no difference in liver enzymes before and after bosentan treatment(P>0.05). The feeding time of 60 mL milk decreased statistically 4 weeks after bosentan treatment. Conclusion Bosentan can not only effectively decrease the mean pulmonary artery pressure of infants with congenital heart disease, but also improve their exercise tolerance. Bosentan is effective and safe in the treatment of CHD-PAH infants.

Key words: Infant, Hypertension pulmonary, Bosentan, Congenital heart disease, Endothelin-1

中图分类号: 

  • R543.2
[1] Kaye AD, Stout TB, Padnos IW, et al. Left-to-right cardiac shunt: perioperative anesthetic considerations[J]. Middle East J Anaesthesiol, 2012, 21(6): 793-806.
[2] Shao D, Park JE, Wort SJ. The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension[J]. Pharmacol Res, 2011, 63(6): 504-511.
[3] 张伟艳, 莫绪明. 波生坦治疗先天性心脏病合并肺动脉高压的研究进展[J]. 心肺血管病杂志, 2012, 31(3): 351-352.
[4] Abman SH, Kinsella JP, Rosenzweig EB, et al. Implications of the U.S. Food and Drug Administration warning against the use of sildenafil for the treatment of pediatric pulmonary hypertension[J]. Am J Respir Crit Care Med, 2013, 187(6): 572-575.
[5] Vonk-Noordegraaf A, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology[J]. J Am Coll Cardiol, 2013, 62(25 Suppl): 22-33.
[6] Hassoun PM, Mouthon L, Barbera JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling[J]. J Am Coll Cardiol, 2009, 54(1 Suppl): 10-19.
[7] Gabbay E, Fraser J, McNeil K. Review of bosentan in the management of pulmonary arterial hypertension[J]. Vasc Health Risk Manag, 2007, 3(6): 887-900.
[8] Stow LR, Jacobs ME, Wingo CS, et al. Endothelin-1 gene regulation[J]. FASEB J, 2011, 25(1): 16-28.
[9] Lee YH, Song GG. Meta-analysis of randomized controlled trials of bosentan for treatment of pulmonary arterial hypertension[J]. Korean J Intern Med, 2013, 28(6): 701-707.
[10] Hall SM, Davie N, Klein N, et al. Endothelin receptor expression in idiopathic pulmonary arterial hypertension: effect of bosentan and epoprostenol treatment[J]. Eur Respir J, 2011, 38(4): 851-860.
[11] Ivy DD, Rosenzweig EB, Lemarié JC, et al. Long-term outcomes in children with pulmonary arterial hypertension treated with bosentan in real-world clinical settings[J]. Am J Cardiol, 2010, 106(9): 1332-1338.
[12 ] Hislop AA, Moledina S, Foster H, et al. Long-term efficacy of bosentan in treatment of pulmonary arterial hypertension in children[J]. Eur Respir J, 2011, 38(1): 70-77.
[13] Vis JC, Duffels MG, Mulder P, et al. Prolonged beneficial effect of bosentan treatment and 4-year survival rates in adult patients with pulmonary arterial hypertension associated with congenital heart disease[J]. Int J Caldiol, 2013, 164(1): 64-69.
[14] Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension[J]. Turk Kardiyol Dern Ars, 2014, 42(Suppl 1): 55-66.
[15] 李爱杰, 顾虹, 张陈, 等. 波生坦对儿童先天性心脏病相关肺动脉高压的治疗作用[J]. 中国医药, 2012, 7(4): 414- 416. LI Aijie, GU Hong, ZHANG Dong, et al. Outcome of bosentan treatment in children with pulmonary arterial hypertension associated with congenital heart disease[J]. China Medicine, 2012, 7(4): 414- 416.
[16] 中华医学会儿科分会心血管学组. 儿童肺高血压诊断与治疗专家共识[J]. 中华医学杂志, 2015, 53(1): 6-11.
[17] Beghetti M, Haworth SG, Bonnet D, et al. Pharmacokinetic and clinical profile of a novel formulation of bosentan in children with pulmonary arterial hypertension: the FUTURE-1 study[J]. Br J Clin Pharmaeol, 2009, 68(6): 948-955.
[18] Moledina S, Hislop AA, Foster H, et al. Childhood idiopathic pulmonary arterial hypertension: a national cohort study[J]. Heart, 2010, 96(17): 1401-1406.
[19 ] DAlto M, Romeo E, Argiento P, et al. Pulmonary vasoreactivity predicts long-term outcome in patients with Eisenmenger syndrome receiving bosentan therapy[J]. Heart, 2010, 96(18): 1475-1479.
[20] Berger RM, Beghetti M, Galie N, et al. Atrial septal defects versus ventricular septal defects in BREATHE-5, a placebo-controlled study of pulmonary arterial hypertension related to Eisenmengers syndrome: a subgroup analysis[J]. Int J Cardiol, 2010, 144(3): 373-378.
[21] 薛强, 鲁一兵, 张伟华, 等. 波生坦联合西地那非治疗先心病合并重度肺动脉高压的临床研究[J]. 昆明医科大学学报, 2014, 8(3): 54-57. XUE Qiang, LU Yibing, ZHANG Weihua, et al. Clinical analysis of bosentan and sildenafil in treatment of severe pulmonary anery hypertension with congenital heart disease[J]. Journal of Kunming Medical University, 2014, 8(3): 54-57.
[22] Rose ML, Strange G, King I, et al. Congenital heart disease-associated pulmonary arterial hypertension: preliminary results form a novel registry[J]. Intern Med J, 2012, 42(8): 874-879.
[1] 张栾,陈欧,栾云,朱晓波,陈元,王一彪. Gemigliptin对野百合碱诱导的肺动脉高压大鼠治疗作用及炎症因子的影响[J]. 山东大学学报(医学版), 2017, 55(5): 19-22.
[2] 李媛媛,王锡明,王龙,纪淙山,段艳华,程召平,刘燕萍,陈静. 双源CT Flash扫描在心血管源性气道狭窄患儿诊断中的临床应用[J]. 山东大学学报(医学版), 2017, 55(11): 59-64.
[3] 许天一,吴萍,王爱玲,陈丽萍. 米力农雾化治疗小儿重症肺炎合并心力衰竭的疗效[J]. 山东大学学报(医学版), 2016, 54(7): 88-90.
[4] 刘慧敏, 刘邓, 李晓宇, 邹淑奉, 姜黎民, 李玉环. 半边莲生物碱对肺动脉高压大鼠ET-1信号通路的影响[J]. 山东大学学报(医学版), 2015, 53(8): 1-4.
[5] 唐蒙蒙, 金女娃, 刘传振, 刘凯, 曹广庆, 王鹤, 庞昕焱, 吴树明. 丙酮酸乙酯对高动力性肺高压的治疗作用[J]. 山东大学学报(医学版), 2015, 53(5): 75-80.
[6] 杨秋梅. 婴儿期迟发型维生素K依赖因子缺乏症62例分析[J]. 山东大学学报(医学版), 2014, 52(S2): 94-95.
[7] 顾红兵, 康爱建. 三种不同喂养方式对婴儿肠道菌群的影响[J]. 山东大学学报(医学版), 2014, 52(S1): 75-76.
[8] 付庆元, 戴桂强, 张松, 安洪春, 梁世民. 西洋参茎叶皂苷对脑梗死大鼠ET-1、VEGF及脑梗死面积的影响[J]. 山东大学学报(医学版), 2014, 52(9): 30-33.
[9] 王亚云1, 王一彪1, 张雪1, 林梅1, 苏宏1,马宇1,朱晓波1, 陈欧2. PS-341对肺动脉高压大鼠Nrf2/NF-κB表达的影响及作用机制[J]. 山东大学学报(医学版), 2014, 52(2): 6-11.
[10] 孟庆红1,赵翠芬1,孔清玉1,李福海1,李栋2,夏伟1. 尾加压素Ⅱ对大鼠肺动脉平滑肌细胞胶原合成的影响[J]. 山东大学学报(医学版), 2013, 51(5): 15-19.
[11] 薛明华1, 张琴2, 侯代伦1,徐庆国2,隋树建3. 组织多普勒成像对肺动脉高压患者右心功能的评价[J]. 山东大学学报(医学版), 2013, 51(4): 37-41.
[12] 龙欣欣,王学禹. 小剂量促皮质素治疗婴儿痉挛的临床疗效及随访分析[J]. 山东大学学报(医学版), 2012, 50(5): 88-91.
[13] 吴文振1, 郝恩魁1,程义伟1,解崔环2,孟彦3,苏国海1. 不同急性肺动脉高压模型的建立及其血流动力学转归的实验研究[J]. 山东大学学报(医学版), 2012, 50(3): 34-39.
[14] 林梅1,王一彪1,苏宏1,马宇1,索琳1,陈鸥2,朱晓波3. Smad信号通路及CTGF在依那普利抑制高肺血流性肺动脉高压形成中的作用机制[J]. 山东大学学报(医学版), 2011, 49(9): 16-.
[15] 张洪宇,王为新,乔衍礼. 外科手术治疗主动脉缩窄39例报告[J]. 山东大学学报(医学版), 2011, 49(9): 160-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!