您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (7): 73-77.doi: 10.6040/j.issn.1671-7554.0.2015.049

• 临床医学 • 上一篇    下一篇

18F-FDG PET/CT确定局部晚期非小细胞肺癌加量放疗靶区的可行性

高昂, 王世江, 付正, 孙新东, 于金明, 孟雪   

  1. 山东省肿瘤医院放射科 山东省医学科学院, 山东 济南 250012
  • 收稿日期:2015-01-13 修回日期:2015-04-16 发布日期:2015-07-10
  • 通讯作者: 孟雪。E-mail:mengxue5409@126.com E-mail:mengxue5409@126.com
  • 基金资助:
    国家自然科学基金(81472810);山东省医药卫生科技发展计划(2014WS0058);山东省科技发展计划(2014GSF118138)

A feasibility study for boost target delineation using 18F-FDG PET/CT in local advanced non-small cell lung cancer

GAO Ang, WANG Shijiang, FU Zheng, SUN Xindong, YU Jinming, MENG Xue   

  1. Department of Radiation Oncology, Shandong Cancer Hospital; Shandong Academy of Medical Sciences, Jinan 250012, Shandong, China
  • Received:2015-01-13 Revised:2015-04-16 Published:2015-07-10

摘要: 目的 评价局部晚期非小细胞肺癌患者, 放疗前18F-FDG高代谢区能否识别放疗中及放疗后高代谢区, 并探讨局部加量的最佳生物学亚靶区。方法 在放疗前、放疗中(40 Gy)和/或放疗后, 分别行18F-FDG PET/CT扫描。利用放疗前原发灶内40%~70%最大标准化摄取值(SUVmax),分别自动勾画相应的感兴趣区;计算放疗前感兴趣区与放疗中、放疗后高代谢区的空间重合率。分析放疗前感兴趣区体积与放疗敏感性指标的相关性。结果 50% SUVmax勾画的感兴趣区与治疗中40% SUVmax及手动勾画的高代谢区有较好的重合率, 分别为(74.3±15.9)%和(84.4±15.3)%;与治疗后80% SUVmax勾画的高代谢区重合率>72%。50% SUVmax勾画的感兴趣区体积较原发灶肿瘤体积小, 为(29.4±12.3)%。但50% SUVmax勾画的感兴趣区与放疗敏感性指标无相关性。结论 放疗前18F-FDG-PET/CT扫描可以识别放疗中及放疗后的18F-FDG摄取区。50% SUVmax勾画的体积可能是适合加量的区域。

关键词: 剂量雕刻, 非小细胞肺癌, 18F-FDG-PET, 加量靶区勾画

Abstract: Objective To evaluate whether during-radiotherapy or post-radiotherapy 18F-FDG uptake locations within tumour can be identified by a pre-radiotherapy scan for non-small cell lung cancer, and to explore the optimal biological sub-volume of the primary tumor for dose escalation. Methods 18F-FDG PET/CT scans were performed at pre-radiotherapy, during-radiotherapy (40 Gy) or post-radiotherapy. The region of interests were auto-delineated using the 40%-70% maximal standardized uptake value (SUVmax) thresholds using pre-radiotherapy scan. Overlap fractions between pre-radiotherapy scan and during-radiotherapy or post-radiotherapy scan were calculated. Then, a Spearman correlation was used to analyze the correlations between the volumes of the region of interests and sensitivities of radiotherapy. Results The 50% SUVmax-delineated region of interests had large overlap fractions with the 40% SUVmax-delineated and manual-delineated regions of high uptake at during-radiotherapy, with the values being (74.3±15.9)% and (84.4±15.3)%, respectively. The overlap fractions of 50% SUVmax-delineated region of interests and the 80% SUVmax-delineated regions of high uptake at post-radiotherapy were more than 72%. The volume of 50% SUVmax-delineated region of interests was smaller than the gross tumor volume (GTV), with the value of being (29.4±12.3)%. However, the 50% SUVmax-delineated region of interests had no correlations with the sensitivities of radiotherapy. Conclusion A 18F-FDG PET/CT scan at pre-radiotherapy can identify the high 18F-FDG uptake regions at during-radiotherapy and post-radiotherapy. The 50% SUVmax-delineated volume may be a suitable region for dose boosting.

Key words: Dose painting, Non-small cell lung cancer, 18F-FDG-PET, Boost target delineation

中图分类号: 

  • R734.2
[1] Machtay M, bae K, Movsas B, et al. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group[J]. Int J Radiat Oncol Biol Phys, 2012, 82(1): 425-434.
[2] Bradley JD, Paulus R, Komaki R, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study[J]. Lancet Oncol, 2015, 16(2): 187-199.
[3] Allal AS, Slosman DO, Kebdani T, et al. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose[J]. Int J Radiat Oncol Biol Phys, 2004, 59(5): 1295-1300.
[4] Aerts HJ, Bosmans G, van Baardwijk AA, et al. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study[J]. Int J Radiat Oncol Biol Phys, 2008, 71(5): 1402-1407.
[5] Feng M, Kong FM, Gross M, et al. Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing[J]. Int J Radiat Oncol Biol Phys, 2009, 73(4): 1228-1234.
[6] Gillham C, Zips D, Pönisch F, et al. Additional PET/CT in week 5-6 of radiotherapy for patients with stage III non-small cell lung cancer as a means of dose escalation planning?[J]. Radiother Oncol, 2008, 88(3): 335-341.
[7] van Elmpt W, De Ruysscher D, van der Salm A, et al. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer[J]. Radiother Oncol, 2012, 104(1): 67-71.
[8] Møller DS, Khalil AA, Knap MM, et al. A planning study of radiotherapy dose escalation of PET-active tumour volumes in non-small cell lung cancer patients[J]. Acta Oncol, 2011, 50(6): 883-888.
[9] Edet-Sanson A, Dubray B, Doyeux K, et al. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC)[J]. Radiother Oncol, 2012, 102(2): 251-257.
[10] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1): 9-29.
[11] Erdi YE, Mawlawi O, Larson SM, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding[J]. Cancer, 1997, 80(12 Suppl): 2505-2509.
[12] Black QC, Grills IS, Kestin LL, et al. Defining a radiotherapy target with positron emission tomography[J]. Int J Radiat Oncol Biol Phys, 2004, 60(4): 1272-1782.
[13] 党亚正, 费晋秀.肿瘤乏氧细胞与放射治疗[J].现代肿瘤医学, 2008, 16(3): 492-497.
[14] Yu J, Li X, Xing L, et al. Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer: a pilot study[J]. Int J Radiat Oncol Biol Phys, 2009, 75(5): 1468-1474.
[15] Dubois L, Landuyt W, Cloetens L, et al.[18F]EF3 is not superior to[18F]FMISO for PET-based hypoxia evaluation as measured in a rat rhabdomyosarcoma tumour model[J]. Eur J Nucl Med Mol Imaging, 2009, 36(2): 209-218.
[16] Nehmeh SA, Lee NY, Schröder H, et al. Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer[J]. Int J Radiat Oncol Biol Phys, 2008, 70(1): 235-242.
[17] Maftei CA, Shi K, Bayer C, et al. Comparison of (immuno-)fluorescence data with serial[(1)(8)F]Fmiso PET/CT imaging for assessment of chronic and acute hypoxia in head and neck cancers[J]. Radiother Oncol, 2011, 99(3): 412-417.
[18] Aerts HJ, Lambin P, Ruysscher DD. FDG for dose painting: a rational choice[J]. Radiother Oncol, 2010, 97(2): 163-164.
[19] Nyflot MJ, Harari PM, Yip S, et al. Correlation of PET images of metabolism, proliferation and hypoxia to characterize tumor phenotype in patients with cancer of the oropharynx[J]. Radiother Oncol, 2012, 105(1): 36-40.
[20] van Baardwijk A, Dooms C, van Suylen RJ, et al. The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer[J]. Eur J Cancer, 2007, 43(9): 1392-1398.
[21] Van den Bergh L, Isebaert S, Koole M, et al. Does 11C-choline PET-CT contribute to multiparametric MRI for prostate cancer localisation?[J]. Strahlenther Onkol, 2013, 189(9): 789-795.
[22] Alber M, Thorwarth D. Multi-modality functional image guided dose escalation in the presence of uncertainties[J]. Radiother Oncol, 2014, 111(3): 354-359.
[1] 孙启晶,陈方方,李春晓,张才擎. PNI及HGB评估中晚期非小细胞肺癌患者预后的临床价值[J]. 山东大学学报(医学版), 2017, 55(4): 55-59.
[2] 戴建建,袁冰,张颖,林琦,袁苑,韩明勇. CT引导下125I粒子植入治疗Ⅲ期非小细胞肺癌疗效与并发症的临床观察[J]. 山东大学学报(医学版), 2017, 55(2): 32-37.
[3] 彭岳,冯振,谢厚耐,王晖,李猛,任万刚,刘通,彭忠民. 61例肺部多发病灶患者的外科治疗[J]. 山东大学学报(医学版), 2017, 55(11): 42-46.
[4] 王丽丽,霍彬,王磊,汪浩,侯定坤,霍小东,王金焕,臧立,曹强,柴树德,王海涛. 亚肺叶切除联合125I粒子植入治疗早期肺癌有效性的Meta分析与系统评价[J]. 山东大学学报(医学版), 2017, 55(10): 76-83.
[5] 杨璐, 刘延国, 李际盛, 王秀问. 蟾毒灵对非小细胞肺癌顺铂化疗的增敏作用及机制[J]. 山东大学学报(医学版), 2015, 53(3): 6-11.
[6] 高鹏, 沈方臻, 肖文静, 修元德, 周玲玲. IB期非小细胞肺癌Runx2、Ezrin表达与术后转移的相关性[J]. 山东大学学报(医学版), 2015, 53(1): 63-66.
[7] 刘淑真, 于国华. 重组人血管内皮抑制素治疗晚期非小细胞肺癌的临床观察[J]. 山东大学学报(医学版), 2014, 52(S1): 125-126.
[8] 李鹏,刘奇,韩明勇. PET-CT、血清CEA及CYFRA21-1预测靶向药物对非小细胞肺癌疗效的研究[J]. 山东大学学报(医学版), 2012, 50(1): 129-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!