您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (8): 111-126.doi: 10.6040/j.issn.1671-7554.0.2024.1456

• 研究进展 • 上一篇    

脑功能网络分析在失语症诊疗中的应用:病理机制分析、临床诊断与疗效评价

罗淇1,2,王霞2,3,4,姜孟2,3,4   

  1. 1.四川外国语大学英语学院, 重庆 400031;2.四川外国语大学语言脑科学研究中心, 重庆 400031;3.四川外国语大学语言智能学院(通识教育学院), 重庆 400031;4.重庆市沙坪坝区国际语言脑机接口联合研究院, 重庆 400030
  • 发布日期:2025-08-25
  • 通讯作者: 姜孟. E-mail:sisuyuzhiteam@163.com
  • 基金资助:
    国家社科基金项目(20BYY095);重庆市研究生科研创新项目(CYB23271)

Application of functional brain network analysis in aphasia: insights into neuropathological mechanisms, clinical diagnosis, and assessment of therapeutic outcome

LUO Qi1,2, WANG Xia2,3,4, JIANG Meng2,3,4   

  1. 1. School of English Studies, Sichuan International Studies University, Chongqing 400031, China;
    2. Language &
    Brain Research Center, Sichuan International Studies University, Chongqing 400031, China;
    3. College of Language Intelligence(College of General Education), Sichuan International Studies University, 400031 Chongqing, China;
    4. Chongqing Shapingba District International Joint Institute of Brain Computer Language Interface, Chongqing 400030, China
  • Published:2025-08-25

摘要: 脑功能网络分析方法通过分析大脑不同区域神经活动的同步性和连接性,揭示大脑功能的组织模式,近年来已成为研究失语症的重要工具。依托非侵入性神经影像(如功能性磁共振成像)与电生理(如脑电图)手段,该方法能够构建大脑功能网络,识别失语症患者异常的功能连接模式及其动态重组特征。本研究系统综述了脑功能网络分析方法在失语症研究中的应用,重点探讨其在病理机制分析、类别诊断、严重程度诊断及治疗方法效果评价中的研究进展。通过整合静态与动态分析方法,结合多种神经影像及电生理技术,揭示失语症患者脑功能网络的显著变化,包括拓扑结构、功能连接、频率带的变化及功能重组。脑功能网络分析方法不仅能够辅助传统诊断手段,提高诊断精度,还可诊断失语症严重程度,评价治疗方法效果。通过系统梳理已有研究成果,以期为未来深入理解失语症的病理机制及制定个性化干预提供理论参考与临床借鉴。

关键词: 脑功能网络分析, 失语症, 病理机制, 临床诊断, 疗效评价

Abstract: Functional brain network analysis has emerged as a powerful approach to study aphasia by characterizing the synchronization patterns and connectivity profiles of neural activity across distributed brain regions. Utilizing advanced non-invasive neuroimaging(e.g. functional magnetic resonance imaging, fMRI)and electrophysiological(e.g. electroencephalography, EEG)techniques, functional networks are constructed to identify abnormal functional connectivity and dynamic network reorganization in aphasic patients. The present systematic review critically evaluates the application of functional brain network analysis in aphasia research, with particular emphasis on elucidation of neuropathological mechanisms, subtype classification, severity stratification, and assessment of therapeutic outcome. Through integrative analysis of both static and dynamic network properties across multiple neuroimaging modalities, we identify consistent patterns of network dysfunction in aphasia, including topological perturbations, functional connectivity reconfigurations, frequency-band-specific oscillations, and compensatory network reorganization. Specifically, this analytical framework demonstrates significant clinical utility by improving the sensitivity and specificity of conventional diagnostic protocols, providing quantitative biomarkers for grading disease severity, and enabling objective assessment of treatment-induced neuroplastic changes. By synthesizing current evidence, this review aims to advance the understanding for future investigations of the neural substrates of aphasia and to inform the development of personalized treatment interventions.

Key words: Functional brain network analysis, Aphasia, Neuropathological mechanisms, Clinical diagnosis, Therapeutic outcome assessment

中图分类号: 

  • H018.4-62
[1] Sherratt S. Aphasia and dysphasia on the internet[J]. Aphasiology, 2021, 35(9): 1227-1237.
[2] de Kleine N, Rose ML, Weinborn M, et al. Does gesture improve the communication success of people with aphasia: a systematic review[J]. Aphasiology, 2024, 38(3): 462-486.
[3] Klingbeil J, Wawrzyniak M, Stockert A, et al. Resting-state functional connectivity: an emerging method for the study of language networks in post-stroke aphasia[J]. Brain Cogn, 2019, 131: 22-33. doi:10.1016/j.bandc.2017.08.005
[4] 刘佳, 范琳. 汉语失语症研究: 回顾与展望[J]. 山东外语教学, 2024, 45(3): 23-33. LIU Jia, FAN Lin. Studies on Chinese Aphasia: Retrospect and Prospect[J]. Shandong Foreign Language Teaching, 2024, 45(3): 23-33.
[5] Adikari A, Hernandez N, Alahakoon D, et al. From concept to practice: a scoping review of the application of AI to aphasia diagnosis and management[J]. Disabil Rehabil, 2024, 46(7): 1288-1297.
[6] Baldassarre A, Metcalf NV, Shulman GL, et al. Brain networks functional connectivity separates aphasic deficits in stroke[J]. Neurology, 2019, 92(2): 125-135.
[7] Wang Y, Yin J, Desai RH. Topological inference on brain networks across subtypes of post-stroke aphasia[EB/OL]. 2023: 2311.01625. https://arxiv.org/abs/2311.01625v1
[8] 李国华, 陆艺, 王胜秋. 不同频率重复经颅磁刺激治疗脑梗死后失语症的疗效[J]. 山东大学学报(医学版), 2023, 61(7): 83-89. LI Guohua, LU Yi, WANG Shengqiu. Observation of the effects of different frequencies of repetitive transcranial magnetic stimulation on aphasia in postcerebral infarction patients[J]. Journal of Shandong University(Health Sciences), 2023, 61(7): 83-89.
[9] Hersh D, Williamson C, Brogan E, et al. “Its day to day problems:” Experiences of people with aphasia who live alone[J]. Int J Speech Lang Pathol, 2024, 26(3): 367-379.
[10] Kao SK, Chan CT. Increased risk of depression and associated symptoms in poststroke aphasia[J]. Sci Rep, 2024, 14(1): 21352. doi:10.1038/s41598-024-72742-z
[11] Burfein P, Roxbury T, Doig EJ, et al. Return to work for stroke survivors with aphasia: a quantitative scoping review[J]. Neuropsychol Rehabil, 2024: 1-35. doi:10.1080/09602011.2024.2381874
[12] Mehraram R, Kries J, De Clercq P, et al. EEG reveals brain network alterations in chronic aphasia during natural speech listening[J]. Sci Rep, 2025, 15(1): 2441. doi:10.1038/s41598-025-86192-8
[13] 李笑仙, 苏薇洁, 俞璐, 等. 针刺治疗缺血性卒中后失语的机制研究[J]. 上海针灸杂志, 2025, 44(6): 660-666. LI Xiaoxian, SU Weijie, YU Lu, et al. 2024. Mechanism study of acupuncture treatment for post-ischemic stroke aphasia[J]. Shanghai Journal of Acupuncture and Moxibustion, 2025, 44(6): 660-666.
[14] 姜小梅, 王萍芝. 基于静息态功能磁共振成像的慢性意识障碍脑功能网络研究进展[J]. 中西医结合心脑血管病杂志, 2024, 22(11): 1981-1984.
[15] Venkadesh S, Van Horn JD. Integrative models of brain structure and dynamics: concepts, challenges, and methods[J]. Front Neurosci, 2021, 15: 752332. doi:10.3389/fnins.2021.752332
[16] Candemir C, Akram VK, Gonul AS. The impact of mental activities and age on brain network: an analysis from complex network perspective[J]. IEEE Trans Emerg Top Comput Intell, 2024, 8(4): 2791-2803.
[17] Sunil G, Gowtham S, Bose A, et al. Graph neural network and machine learning analysis of functional neuroimaging for understanding schizophrenia[J]. BMC Neurosci, 2024, 25(1): 2. doi:10.1186/s12868-023-00841-0
[18] 张斌龙, 常静玲, 韩奕, 等. 基于脑功能网络分析技术下: “益髓醒神” 针刺治疗不同部位卒中后失语的案例分析[J]. 环球中医药, 2019, 12(6): 929-932.
[19] 吕天丽, 马佳骏, 刘璐, 等. 卒中后基底节失语症患者针刺联合语言康复训练前后静息态脑功能网络连通性变化分析[J]. 中国医师杂志, 2023, 25(9): 1313-1318. LYU Tianli, MA Jiajun, LIU Lu, et al. Analysis of changes in connectivity of resting brain functional network before and after acupuncture combined with language rehabilitation training in patients with basal ganglia aphasia after stroke [J]. Chinese Journal of Physicians, 2023, 25(9): 1313-1318.
[20] 尹涛, 何昭璇, 马培宏, 等. 针刺功能磁共振成像研究任务设计方法述评[J]. 中华中医药学刊, 2019, 37(7): 1657-1660. YIN Tao, HE Zhaoxuan, MA Peihong, et al. A narrative review of task design in acupuncture-fMRI researches[J]. Chinese Archives of Traditional Chinese Medicine, 2019, 37(7): 1657-1660.
[21] Tang JP, Xiang XL, Cheng XL. The progress of functional magnetic resonance imaging in patients with poststroke aphasia[J]. J Healthc Eng, 2022, 2022: 3270534. doi:10.1155/2022/3270534
[22] Babaeeghazvini P, Rueda-Delgado LM, Gooijers J, et al. Brain structural and functional connectivity: a review of combined works of diffusion magnetic resonance imaging and electro-encephalography[J]. Front Hum Neurosci, 2021, 15: 721206. doi:10.3389/fnhum.2021.721206
[23] Sarmukadam K, Behroozmand R. Aberrant beta-band brain connectivity predicts speech motor planning deficits in post-stroke aphasia[J]. Cortex, 2022, 155: 75-89. doi:10.1016/j.cortex.2022.07.001
[24] 徐桂芝, 于洪丽, 杨硕, 等. 基于EEG的脑源定位与脑功能网络[M]. 北京: 电子工业出版社, 2021: 1-207.
[25] Du YH, Fang SK, He XY, et al. A survey of brain functional network extraction methods using fMRI data[J]. Trends Neurosci, 2024, 47(8): 608-621.
[26] 于春水, 马林, 张伟国. 颅脑影像诊断学[M]. 3版. 北京: 人民卫生出版社, 2019: 1-688.
[27] Liu JY, Yang WX, Ma YL, et al. Effective hyper-connectivity network construction and learning: application to major depressive disorder identification[J]. Comput Biol Med, 2024, 171: 108069. doi:10.1016/j.compbiomed.2024.108069
[28] Schulze J, Sinke C, Neumann I, et al. Effects of glabellar botulinum toxin injections on resting-state functional connectivity in borderline personality disorder[J]. Eur Arch Psychiatry Clin Neurosci, 2024, 274(1): 97-107.
[29] Parker AJ, Walker JC, Jordan LS, et al. Neural mechanisms of inhibitory control in preadolescent irritability: Insights from the ABCD study[J]. Biol Psychol, 2024, 192: 108856.
[30] Safari M, Shalbaf R, Bagherzadeh S, et al. Classification of mental workload using brain connectivity and machine learning on electroencephalogram data[J]. Sci Rep, 2024, 14(1): 9153. doi:10.1038/s41598-024-59652-w
[31] Xie JP, Zhang WD, Yu C, et al. Abnormal static and dynamic brain network connectivity associated with chronic tinnitus[J]. Neuroscience, 2024, 554: 26-33. doi:10.1016/j.neuroscience.2024.06.034
[32] Gonzalez-Burgos L, Pereira JB, Mohanty R, et al. Cortical networks underpinning compensation of verbal fluency in normal aging[J]. Cereb Cortex, 2021, 31(8): 3832-3845.
[33] Riccardi N, Zhao XP, den Ouden DB, et al. Network-based statistics distinguish anomic and Brocas aphasia[J]. Brain Struct Funct, 2024, 229(9): 2237-2253.
[34] Guo J, Biswal BB, Han SQ, et al. Altered dynamics of brain segregation and integration in poststroke aphasia[J]. Hum Brain Mapp, 2019, 40(11): 3398-3409.
[35] Tao W, Lu X, Yuan S, et al. Unstable functional brain states and reduced cerebro-cerebellar modularity in elderly individuals with subjective cognitive decline[J]. Neuroimage, 2025, 305: 120969. doi:10.1016/j.neuroimage.2024.120969
[36] 陈芷涵, 王容, 李郁欣, 等. 功能磁共振成像动态脑功能连接网络分析方法及其在脑疾病中的应用[J]. 中国临床神经科学, 2020, 28(5): 571-578. CHEN Zhihan, WANG Rong, LI Yuxin, et al. Dynamic function connectivity network analysis methods of functional magnetic resonance image and its application in brain diseases[J]. Chinese Journal of Clinical Neurosciences, 2020, 28(5): 571-578.
[37] Truzman T, Rochon E, Meltzer J, et al. Simultaneous normalization and compensatory changes in right hemisphere connectivity during aphasia therapy[J]. Brain Sci, 2021, 11(10): 1330. doi:10.3390/brainsci11101330
[38] Gonzalez-Burgos L, Pereira JB, Mohanty R, et al. Cortical networks underpinning compensation of verbal fluency in normal aging[J]. Cereb Cortex, 2021, 31(8): 3832-3845.
[39] Chen XY, Chen LT, Zheng SN, et al. Disrupted brain connectivity networks in aphasia revealed by resting-state fMRI[J]. Front Aging Neurosci, 2021, 13: 666301. doi:10.3389/fnagi.2021.666301
[40] 樊瑞文, 李晓琳, 黄幸, 等. 基于语言双流模型的卒中后失语右脑功能网络研究[J]. 中国康复理论与实践, 2020, 26(5): 572-578. FAN Ruiwen, LI Xiaolin, HUANG Xing, et al. Functional connectivities in right hemisphere for post-stroke aphasia: based on dual stream model[J]. Chinese Journal of Rehabilitation Theory and Practice, 2020, 26(5): 572-578.
[41] Utianski RL, Botha H, Caviness JN, et al. A preliminary report of network electroencephalographic measures in primary progressive apraxia of speech and aphasia[J]. Brain Sci, 2022, 12(3): 378. doi:10.3390/brainsci12030378
[42] Li HZ, Zhang H, Xu S, et al. Altered spontaneous brain activity in poststroke aphasia: a resting-state fMRI study[J]. Brain Sci, 2023, 13(2): 300. doi:10.3390/brainsci13020300
[43] Mehraram R, Kries J, De Clercq P, et al. EEG reveals brain network alterations in chronic aphasia during natural speech listening[J]. Sci Rep, 2025, 15: 2441. doi:10.1038/s41598-025-86192-8
[44] Lin F, Cheng SQ, Qi DQ, et al. Brain hothubs and dark functional networks: correlation analysis between amplitude and connectivity for Brocas aphasia[J]. PeerJ, 2020, 8: e10057. doi:10.7717/peerj.10057
[45] 林枫, 江钟立, 程少强, 等. 非流畅性失语症脑功能网络分析[J]. 中国康复医学杂志, 2017, 32(3): 269-274. LIN Feng, JIANG Zhongli, CHENG Shaoqiang, et al. Functional brain network analyses of language functions in non-fluent aphasics[J]. Chinese Journal of Rehabilitation Medicine, 2017, 32(3): 269-274.
[46] Griffis JC, Nenert R, Allendorfer JB, et al. Parallel ICA reveals linked patterns of structural damage and fMRI language task activation in chronic post-stroke aphasia[J]. arXiv E Prints, 2016: arXiv: 1610.04201. doi:10.48550/arXiv.1610.04201
[47] López-Barroso D, Paredes-Pacheco J, Torres-Prioris MJ, et al. Brain structural and functional correlates of the heterogenous progression of mixed transcortical aphasia[J]. Brain Struct Funct, 2023, 228(5): 1347-1364.
[48] Guo J, Yang M, Biswal BB, et al. Abnormal functional connectivity density in post-stroke aphasia[J]. Brain Topogr, 2019, 32(2): 271-282.
[49] Han LY, Ke J, Zhang DW, et al. Altered functional connectivity in language and non-language brain networks in patients diagnosed with acute post-stroke aphasia[J]. Clin Neurol Neurosurg, 2023, 235: 108044. doi:10.1016/j.clineuro.2023.108044
[50] Engel AK, Fries P. Beta-band oscillations: signalling the status quo?[J]. Curr Opin Neurobiol, 2010, 20(2): 156-165.
[51] Schomer DL, Lopes da Silva FH. Niedermeyers electroencephalography: basic principles, clinical applications, and related fields(7th ed.)[M]. Oxford: Oxford University Press, 2017: 1-1264.
[52] Sarmukadam K, Behroozmand R. Aberrant beta-band brain connectivity predicts speech motor planning deficits in post-stroke aphasia[J]. Cortex, 2022, 155: 75-89. doi:10.1016/j.cortex.2022.07.001
[53] Shah-Basak P, Sivaratnam G, Teti S, et al. Electrophy-siological connectivity markers of preserved language functions in post-stroke aphasia[J]. Neuroimage Clin, 2022, 34: 103036. doi:10.1016/j.nicl.2022.103036
[54] Sarmukadam K, Behroozmand R. Neural oscillations reveal disrupted functional connectivity associated with impaired speech auditory feedback control in post-stroke aphasia[J]. Cortex, 2023, 166: 258-274. doi:10.1016/j.cortex.2023.05.015
[55] Wang Y, Yin J, Desai RH. Topological inference on brain networks across subtypes of post-stroke aphasia[J]. ArXiv, 2023: 2311.01625v1
[56] John AA, Javali M, Mahale R, et al. Clinical impression and Western Aphasia Battery classification of aphasia in acute ischemic stroke: is there a discrepancy?[J]. J Neurosci Rural Pract, 2017, 8(1): 74-78.
[57] Yang M, Li J, Li ZQ, et al. Whole-brain functional connectome-based multivariate classification of post-stroke aphasia[J]. Neurocomputing, 2017, 269: 199-205. doi:10.1016/j.neucom.2016.10.094
[58] Landrigan JF, Zhang FQ, Mirman D. A data-driven approach to post-stroke aphasia classification and lesion-based prediction[J]. Brain, 2021, 144(5): 1372-1383.
[59] Zhao Y, Cox CR, Lambon Ralph MA, et al. Using in vivo functional and structural connectivity to predict chronic stroke aphasia deficits[J]. Brain, 2023, 146(5): 1950-1962.
[60] Zhu HZ, Fitzhugh MC, Keator LM, et al. How can graph theory inform the dual-stream model of speech processing? a resting-state fMRI study of post-stroke aphasia[J]. bioRxiv, 2023: 2023.04.17.537216. doi:10.1101/2023.04.17.537216
[61] Mandelli ML, Vilaplana E, Brown JA, et al. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia[J]. Brain, 2016, 139(10): 2778-2791.
[62] Kawano T, Hattori N, Uno Y, et al. Association between aphasia severity and brain network alterations after stroke assessed using the electroencephalographic phase synchrony index[J]. Sci Rep, 2021, 11(1): 12469. doi:10.1038/s41598-021-91978-7
[63] Katsumi Y, Quimby M, Hochberg D, et al. Association of regional cortical network atrophy with progression to dementia in patients with primary progressive aphasia[J]. Neurology, 2023, 100(3): 286-296.
[64] Thiel A, Zumbansen A. The pathophysiology of post-stroke aphasia: a network approach[J]. Restor Neurol Neurosci, 2016, 34(4): 507-518.
[65] Baliki MN, Babbitt EM, Cherney LR. Brain network topology influences response to intensive comprehensive aphasia treatment[J]. NeuroRehabilitation, 2018, 43(1): 63-76.
[66] Abel S, Weiller C, Huber W, et al. Therapy-induced brain reorganization patterns in aphasia[J]. Brain, 2015, 138( 4): 1097-1112.
[67] Johnson JP, Meier EL, Pan Y, et al. Pre-treatment graph measures of a functional semantic network are associated with Naming therapy outcomes in chronic aphasia[J]. Brain Lang, 2020, 207: 104809. doi:10.1016/j.bandl.2020.104809
[68] Katsuno Y, Ueki Y, Ito K, et al. Effects of a new speech support application on intensive speech therapy and changes in functional brain connectivity in patients with post-stroke aphasia[J]. Front Hum Neurosci, 2022, 16: 870733. doi:10.3389/fnhum.2022.870733
[69] Dreyer FR, Doppelbauer L, Büscher V, et al. Increased recruitment of domain-general neural networks in language processing following intensive language-action therapy: fMRI evidence from people with chronic aphasia[J]. Am J Speech Lang Pathol, 2021, 30(1): 455-465.
[70] Song SE, Krishnamurthy LC, Rodriguez AD, et al. Methodologies for task-fMRI based prognostic biomar-kers in response to aphasia treatment[J]. Behav Brain Res, 2023, 452: 114575. doi:10.1016/j.bbr.2023.114575
[71] Susan Duncan E, Small SL. Changes in dynamic resting state network connectivity following aphasia therapy[J]. Brain Imaging Behav, 2018, 12(4): 1141-1149.
[72] Song YC, Liu FH, Kang LQ, et al. Effects of transcranial direct current stimulation on graph Naming function and brain connectivity in postinfarction aphasia patients: an fMRI study[J]. Folia Phoniatr Logop, 2024, 76(3): 264-272.
[73] Fenner AS, Webster KT, Ficek BN, et al. Written verb Naming improves after tDCS over the left IFG in primary progressive aphasia[J]. Front Psychol, 2019, 10: 1396. doi:10.3389/fpsyg.2019.01396
[74] Xu S, Yang Q, Chen MY, et al. Capturing neuroplastic changes after iTBS in patients with post-stroke aphasia: a pilot fMRI study[J]. Brain Sci, 2021, 11(11): 1451. doi:10.3390/brainsci11111451
[75] Xu MJ, Gao Y, Zhang H, et al. Modulations of static and dynamic functional connectivity among brain networks by electroacupuncture in post-stroke aphasia[J]. Front Neurol, 2022, 13: 956931. doi:10.3389/fneur.2022.956931
[76] Chang WK, Park J, Lee JY, et al. Functional network changes after high-frequency rTMS over the most activated speech-related area combined with speech therapy in chronic stroke with non-fluent aphasia[J]. Front Neurol, 2022, 13: 690048. doi:10.3389/fneur.2022.690048
[77] Tao Y, Ficek B, Wang ZY, et al. Selective functional network changes following tDCS-augmented language treatment in primary progressive aphasia[J]. Front Aging Neurosci, 2021, 13: 681043. doi:10.3389/fnagi.2021.681043
[78] Dattola S, La Foresta F. Effect of rehabilitation on brain functional connectivity in a stroke patient affected by conduction aphasia[J]. Appl Sci, 2022, 12(12): 5991. doi:10.3390/app12125991
[1] 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118.
[2] 路瑾. 多发性骨髓瘤诊治进展 ——写在2019年伊始[J]. 山东大学学报 (医学版), 2019, 57(7): 40-43.
[3] 杨慎敏,张锋,李铮. 精子鞭毛多发形态异常的临床诊断[J]. 山东大学学报 (医学版), 2018, 56(4): 38-42.
[4] 胡艳艳,李桂梅,乔昕,王倩. 特发性中枢性性早熟女孩下丘脑垂体核磁共振和血清胰岛素样生长因子-1检测的临床意义[J]. 山东大学学报(医学版), 2012, 50(10): 6-10.
[5] 许继映,王东芳,王明明,姜曼,毕玉莉,韩明勇. 血清蛋白质指纹图谱与非小细胞肺癌临床分期关系的研究[J]. 山东大学学报(医学版), 2011, 49(9): 132-.
[6] . 应用PAR指数评价不同矫治技术的治疗效果[J]. 山东大学学报(医学版), 2009, 47(7): 78-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!