您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 75-86.doi: 10.6040/j.issn.1671-7554.0.2025.0321

• 临床医学 • 上一篇    

基于Web of Science的脊髓损伤致截瘫患者康复研究可视化分析

刘翔1,高玮1,王超1,张晓艳2   

  1. 山东第一医科大学附属省立医院 1.康复医学科;2.消化内镜中心, 山东 济南 250021
  • 发布日期:2025-11-28
  • 通讯作者: 张晓艳. E-mail:2719662779@qq.com
  • 基金资助:
    山东省自然科学基金面上项目(ZR2021MH037)

Visual analysis of rehabilitation research on patients with paraplegia caused by spinal cord injury based on Web of Science

LIU Xiang1, GAO Wei1, WANG Chao1, ZHANG Xiaoyan2   

  1. 1. Department of Rehabilitation;
    2. Department of Gastrointestinal Endoscopy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2025-11-28

摘要: 目的 探讨脊髓损伤致截瘫患者康复的研究现状、国际合作情况、热点主题以及发展趋势。 方法 检索Web of Science核心数据库收录的脊髓损伤致截瘫患者康复研究相关文献,检索时限为2005年1月1日至2024年12月31日,采用CiteSpace、VOSviewer和R-bibliometrix进行文献计量学与可视化分析,提取发文量、国家与机构合作网络、高被引文献、关键词共现与演变趋势等指标进行系统性分析。 结果 共检索到584篇符合纳入标准的文献,美国、瑞士等国家及其机构和作者在脊髓损伤致截瘫患者康复领域发文量和被引频次均处于领先水平,国际间已经形成较为稳定的国家和地区的合作关系网络。研究热点正由病理机制的基础研究转向技术驱动的干预手段和神经康复方向,呈现出多学科融合与精准康复的发展趋势。 结论 该领域正处于由传统康复模式向技术驱动与健康管理一体化转型的关键阶段。未来研究需进一步加强跨学科协作,促进低成本技术普及,完善心理、社区康复体系,推动建立普惠化、智能化的康复健康管理体系。

关键词: 文献计量学, 截瘫, 脊髓损伤, 康复, 可视化分析

Abstract: Objective To provide a comprehensive scientometric analysis of the research landscape, international collaborations, thematic evolution, and emerging trends in the rehabilitation of patients with paraplegia resulting from spinal cord injury. Methods Relevant literatures on the rehabilitation of patients with paraplegia resulting from spinal cord injury, published between January 1, 2005, and December 31, 2024, were retrieved from the Web of Science Core Collection. Bibliometric and visualization analyses were conducted using CiteSpace, VOSviewer, and R-bibliometrix. Key indicators such as publication volume, national and institutional collaboration networks, highly cited articles, keyword co-occurrence, and thematic evolution trends were systematically analyzed. Results A total of 584 articles met the inclusion criteria. Research output and citation frequency were predominantly concentrated in the United States, Switzerland, and other Western countries, where relatively stable international collaboration networks had been established. The focus of research had undergone a progressive shift from fundamental investigations into pathological mechanisms to technology-driven interventions and neurorehabilitation strategies, which reflectd a trend toward multidisciplinary integration and precision rehabilitation. Conclusion The rehabilitation of SCI-induced paraplegia is undergoing a paradigm shift from traditional approaches towards integrated models driven by technological innovation and holistic health management. Future directions should prioritize interdisciplinary collaboration, the dissemination of low-cost technological solutions, the strengthening of psychological and community-based rehabilitation systems, and the development of inclusive, intelligent health management frameworks to ensure broader accessibility and sustainability.

Key words: Bibliometric, Paraplegia, Spinal cord injury, Rehabilitation, Visualization analysis

中图分类号: 

  • R496
[1] Rupp R. Spinal cord lesions[M]. Amsterdam: Elsevier, 2020: 51-65.
[2] Flack JA, Sharma KD, Xie JY. Delving into the recent advancements of spinal cord injury treatment: a review of recent progress[J]. Neural Regen Res, 2022, 17(2): 283-291.
[3] Ding WZ, Hu SA, Wang PJ, et al. Spinal cord injury: the global incidence, prevalence, and disability from the global burden of disease study 2019[J]. Spine(Phila Pa 1976), 2022, 47(21): 1532-1540.
[4] Faleiros F, Marcossi M, Ribeiro O, et al. Epidemiological profile of spinal cord injury in Brazil[J]. J Spinal Cord Med, 2023, 46(1): 75-82.
[5] Fehlings MG, Tetreault LA, Wilson JR, et al. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope[J]. Global Spine J, 2017, 7(3 Suppl): 84-94.
[6] Harvey LA. Physiotherapy rehabilitation for people with spinal cord injuries[J]. J Physiother, 2016, 62(1): 4-11.
[7] Scivoletto G, Miscusi M, Forcato S, et al. The rehabilitation of spinal cord injury patients in Europe[J]. Acta Neurochir Suppl, 2017, 124: 203-210. doi: 10.1007/978-3-319-39546-3_31
[8] Arruda H, Silva ER, Lessa M, et al. VOSviewer and bibliometrix[J]. Jmla, 2022, 110(3): 392-395.
[9] van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538.
[10] Zhou XB, Zhou M, Huang DS, et al. A probabilistic model for co-occurrence analysis in bibliometrics[J]. J Biomed Inform, 2022, 128: 104047. doi: 10.1016/j.jbi.2022.104047
[11] Xu S, Fu Y, Xu D, et al. Mapping research trends of medications for multidrug-resistant pulmonary tuberculosis based on the co-occurrence of specific semantic types in the MeSH tree: a bibliometric and visualization-based analysis of PubMed literature(1966-2020)[J]. Drug Des Devel Ther, 2023, 17: 2035-2049. doi: 10.2147/DDDT.S409604
[12] 杨兆鑫, 徐晓莉. 基于CiteSpace的医院韧性研究可视化分析[J]. 山东大学学报(医学版), 2025, 63(2): 111-117. YANG Zhaoxin, XU Xiaoli. Visual analysis of hospital resilience research based on CiteSpace[J]. Journal of Shandong University(Health Sciences), 2025, 63(2): 111-117.
[13] Ye L, Liang R, Liu XL, et al. Frailty and sarcopenia: a bibliometric analysis of their association and potential targets for intervention[J]. Ageing Res Rev, 2023, 92: 102111. doi: 10.1016/j.arr.2023.102111
[14] Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. Am J Phys Med Rehabil, 2012, 91(11): 911-921.
[15] Zeilig G, Weingarden H, Zwecker M, et al. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study[J]. J Spinal Cord Med, 2012, 35(2): 96-101.
[16] Gill ML, Grahn PJ, Calvert JS, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia[J]. Nat Med, 2018, 24(11): 1677-1682.
[17] Wirz M, Zemon DH, Rupp R, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial[J]. Arch Phys Med Rehabil, 2005, 86(4): 672-680.
[18] Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury[J]. Phys Ther, 2005, 85(1): 52-66.
[19] Anderson KD, Guest JD, Dietrich WD, et al. Safety of autologous human schwann cell transplantation in subacute thoracic spinal cord injury[J]. J Neurotrauma, 2017, 34(21): 2950-2963.
[20] Lima C, Escada P, Pratas-Vital J, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury[J]. Neurorehabil Neural Repair, 2010, 24(1): 10-22.
[21] Dobkin BH. Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation[J]. J Physiol, 2007, 579(Pt 3): 637-642.
[22] Winchester P, McColl R, Querry R, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury[J]. Neurorehabil Neural Repair, 2005, 19(4): 313-324.
[23] Catalano D, Chan F, Wilson L, et al. The buffering effect of resilience on depression among individuals with spinal cord injury: a structural equation model[J]. Rehabil Psychol, 2011, 56(3): 200-211.
[24] Forte G, Leemhuis E, Favieri F, et al. Exoskeletons for mobility after spinal cord injury: a personalized embodied approach[J]. J Pers Med, 2022, 12(3): 380. doi: 10.3390/jpm12030380
[25] Shi JY, Yue SJ, Chen HS, et al. Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping[J]. Syst Rev, 2025, 14(1): 62. doi: 10.1186/s13643-025-02779-2
[26] Chen SJ, Wang ZB, Li YQ, et al. Safety and feasibility of a novel exoskeleton for locomotor rehabilitation of subjects with spinal cord injury: a prospective, multi-center, and cross-over clinical trial[J]. Front Neurorobot, 2022, 16: 848443. doi: 10.3389/fnbot.2022.848443
[27] Tuttle KR. Impact of the COVID-19 pandemic on clinical research[J]. Nat Rev Nephrol, 2020, 16(10): 562-564.
[28] Asselin P, Knezevic S, Kornfeld S, et al. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia[J]. J Rehabil Res Dev, 2015, 52(2): 147-158.
[29] Namikawa Y, Kawamoto H, Sankai Y. Gait evaluation with bioelectrical signal patterns during cybernic treatment[C] //2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC). November 1-5, 2021, Mexico. IEEE, 2021: 6728-6733.
[30] Louie DR, Ben Mortenson W, Durocher M, et al. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial[J]. J Neuroeng Rehabil, 2021, 18(1): 149. doi: 10.1186/s12984-021-00942-z
[31] Angeli CA, Edgerton VR, Gerasimenko YP, et al. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans[J]. Brain, 2014, 137(Pt 5): 1394-1409.
[32] Naik N, Hameed BMZ, Shetty DK, et al. Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility [J]. Front Surg, 2022, 9: 862322. doi: 10.3389/fsurg.2022.862322
[33] Lu L, Zhang JY, Xie Y, et al. Wearable health devices in health care: narrative systematic review[J]. JMIR Mhealth Uhealth, 2020, 8(11): e18907. doi: 10.2196/18907
[34] Ejnisman L, Helito CP, Camargo AFF, et al. Three-dimensional printing in orthopedics: where we stand and where we are heading[J]. Acta Ortop Bras, 2021, 29(4): 223-227.
[35] Abbady HEMA, Klinkenberg ETM, de Moel L, et al. 3D-printed prostheses in developing countries: a systema-tic review[J]. Prosthet Orthot Int, 2022, 46(1): 19-30.
[36] Su XP, Liu Q, Wang JW, et al. Patient activation during the first 6 months after the start of spinal cord injury rehabilitation: a cohort study[J]. Eur J Phys Rehabil Med, 2025, 61(2): 250-262.
[37] Hagen EM. Acute complications of spinal cord injuries[J]. World J Orthop, 2015, 6(1): 17-23.
[38] Kruger EA, Pires M, Ngann Y, et al. Comprehensive management of pressure ulcers in spinal cord injury: current concepts and future trends[J]. J Spinal Cord Med, 2013, 36(6): 572-585.
[39] Billington ZJ, Henke AM, Gater DRJ. Spasticity management after spinal cord injury: the here and now[J]. J Pers Med. 2022,12(5):808. doi: 10.3390/jpm12050808
[40] Aguirre-Guemez AV, Groah SL. Managing recurrent urinary tract infections after spinal cord injury: practical approaches and emerging concepts[J]. Phys Med Rehabil Clin N Am, 2025, 36(1): 73-98.
[41] Shang ZZ, Wanyan PP, Zhang BL, et al. Incidence and risk factors of deep vein thrombosis in patients with spinal cord injury: a systematic review with meta-analysis[J]. Front Cardiovasc Med, 2023, 10: 1153432. doi: 10.3389/fcvm.2023.1153432
[42] Ma CC, Li WF, Gravina R, et al. Posture detection based on smart cushion for wheelchair users[J]. Sensors(Basel), 2017, 17(4): 719. doi: 10.3390/s17040719
[43] Alashram AR, Annino G, Mercuri NB. Changes in spasticity following functional electrical stimulation cycling in patients with spinal cord injury: a systematic review[J]. J Spinal Cord Med, 2022, 45(1): 10-23.
[44] Luo SY, Xu HN, Zuo Y, et al. A review of functional electrical stimulation treatment in spinal cord injury[J]. Neuromolecular Med, 2020, 22(4): 447-463.
[45] Jhaveri MM, Benjamin-Garner R, Rianon N, et al. Telemedicine-guided education on secondary stroke and fall prevention following inpatient rehabilitation for Texas patients with stroke and their caregivers: a feasibility pilot study[J]. BMJ Open, 2017, 7(9): e017340. doi: 10.1136/bmjopen-2017-017340
[46] Kruk ME, Gage AD, Arsenault C, et al. High-quality health systems in the Sustainable Development Goals era: time for a revolution[J]. Lancet Glob Health, 2018, 6(11): 1196-1252.
[1] 龚蓉,崔乃雪,陈恺悦,赵佳,单瑞洁,张训琪. 体感游戏在儿童癌症幸存者中的应用[J]. 山东大学学报 (医学版), 2025, 63(4): 94-99.
[2] 马志虎,于晓凤,孙玉亮,王刚,裴艳涛,陈斌,史安浩,乔丽,朱磊. 加速康复外科综合治疗在三角纤维软骨复合体损伤患者围术期中的应用[J]. 山东大学学报 (医学版), 2025, 63(3): 28-35.
[3] 胡冰涛,张文灿,王崇怡,林翔宇,王凯斌,冯运泽,刘郴,徐万龙,李乐,司海朋. 基于加速康复外科理念的单孔分体内镜微创技术治疗腰椎管狭窄症的临床效果分析[J]. 山东大学学报 (医学版), 2025, 63(3): 1-7.
[4] 杨兆鑫,徐晓莉. 基于CiteSpace的医院韧性研究可视化分析[J]. 山东大学学报 (医学版), 2025, 63(2): 111-117.
[5] 周永康,孙境,张帅,钱向阳. 胸腹主动脉瘤开放修复脊髓保护策略的研究进展[J]. 山东大学学报 (医学版), 2024, 62(9): 49-54.
[6] 孙境,张帅,齐红霞,李远,周永康,胡可鉴,钱向阳. 常温自身动脉转流内脏优先策略在胸腹主动脉置换手术中的脊髓保护作用[J]. 山东大学学报 (医学版), 2024, 62(9): 80-85.
[7] 甘琦晴,刘现虎,苟园,杨彬. 主动脉夹层合并截瘫诊断与治疗2例并文献复习[J]. 山东大学学报 (医学版), 2024, 62(8): 101-106.
[8] 王琼,李欣宇,徐磊,周成超,江帆. 社区听力康复对老年听力障碍患者沟通能力的干预效果评估:一项随机对照试验[J]. 山东大学学报 (医学版), 2024, 62(11): 96-104.
[9] 唐宁,黄晓莉,宋桂花. 老年髋部骨折手术患者营养管理研究进展[J]. 山东大学学报 (医学版), 2024, 62(10): 42-47.
[10] 司海朋,王崇怡,宫桂青,张文灿,郭英俊,王凯斌,冯运泽,徐万龙,李乐. 加速康复外科在脊柱外科中的应用进展[J]. 山东大学学报 (医学版), 2024, 62(10): 8-17.
[11] 姜任东,赵建莉,时超,贺业腾,袁振. 加速康复外科理念下全膝关节置换治疗类风湿关节炎与骨关节炎患者的临床疗效[J]. 山东大学学报 (医学版), 2024, 62(10): 62-67.
[12] 华裔骨科学会骨科康复专业委员会. 全膝关节置换术后膝关节功能加速康复专家共识[J]. 山东大学学报 (医学版), 2024, 62(10): 48-61.
[13] 张杨,李晓旭. 加速康复外科理念在骨折治疗中的研究进展[J]. 山东大学学报 (医学版), 2024, 62(10): 18-25.
[14] 冯昌,郭岩,赵杰,赵鑫. 加速康复外科理念下超声引导区域阻滞在骨科手术中的研究进展[J]. 山东大学学报 (医学版), 2024, 62(10): 26-35.
[15] 刘培来,李学州,卢群山,孙厚义,杨杰,李哲. 膝关节置换术后常用康复器具的应用与疗效分析[J]. 山东大学学报 (医学版), 2024, 62(10): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!