您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (6): 38-47.doi: 10.6040/j.issn.1671-7554.0.2024.0227

• 基础医学 • 上一篇    下一篇

YBX3通过调节UCP1的表达调控棕色脂肪产热和能量消耗

王文琴,高贤龙,巩永凤,冯科   

  • 出版日期:2024-06-10 发布日期:2024-07-15
  • 通讯作者: 冯科. E-mail:fengk688@bzmc.edu.cn;巩永凤. E-mail:ygong@bzmc.edu.cn
  • 基金资助:
    国家自然科学基金(82200514;81670620)

YBX3 regulates thermogenesis and energy expenditure by regulating UCP1 in brown adipose tissue

WANG Wenqin, GAO Xianlong, GONG Yongfeng, FENG Ke   

  1. Department of Physiology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
  • Online:2024-06-10 Published:2024-07-15

摘要: 目的 探讨棕色脂肪组织(brown adipose tissue, BAT)中Y盒蛋白3(Y-box binding protein 3, YBX3)水平对小鼠产热和能量消耗的影响作用机制。 方法 将小鼠置于4 ℃环境作为冷刺激方法。用慢病毒侵染法构建过表达YBX3或者抑制YBX3表达的人血管基质组分细胞系。测量细胞的耗氧率用于评估细胞的线粒体功能。向小鼠BAT注射YBX3的小干扰RNA(small interfering RNA, siRNA)构建抑制小鼠BAT中YBX3表达的模型。检测小鼠的O2消耗速率、CO2释放速率和能量消耗速率用于评估小鼠能量代谢情况。采用qRT-PCR、Western blotting、免疫荧光染色法检测过氧化物酶体增殖物激活受体γ共激活因子1α(peroxisome proliferator-activated receptor gamma coactivator 1α, PGC-1α)、解偶联蛋白1(uncoupling protein 1, UCP1)和YBX3基因的表达。采用苏木精-伊红法染色检测BAT中脂肪细胞脂滴大小。采用RNA结合蛋白免疫沉淀提取与YBX3特异性结合的mRNA。采用二代测序方法鉴定mRNA。采用双荧光素酶报告基因系统检测YBX3与目的序列结合的情况。 结果 在寒冷刺激下野生型小鼠BAT中YBX3的表达显著增加(P<0.05)。过表达YBX3的人血管基质组分细胞系诱导为成熟棕色脂肪细胞后可以促进产热基因PGC-1α和UCP1的表达(P<0.05)。抑制YBX3表达的人血管基质组分细胞系诱导为成熟棕色脂肪细胞后可以抑制PGC-1α和UCP1的表达(P<0.05)、抑制线粒体氧化磷酸化(P<0.05)。与对照组相比,小鼠注射si-Ybx3之后能量消耗显著降低(P<0.05),在寒冷环境难以维持体温(P<0.05),产热基因表达被显著抑制(P<0.01),BAT中脂肪细胞脂滴大小显著增加(P<0.05)。与在25 ℃相比,4 ℃环境刺激下BAT中YBX3在细胞核中的表达显著增加(P<0.05)。YBX3能够特异性地与PGC-1αmRNA 3'非翻译区特定位点相结合(P<0.05)。YBX3能够特异性地与PGC-1α和UCP1启动子区域相结合(P<0.05)。 结论 BAT中YBX3能够通过调控PGC-1α和UCP1的表达影响产热和能量代谢。

关键词: Y-盒蛋白3, 产热, 能量消耗, 棕色脂肪组织, 解偶联蛋白1

Abstract: Objective To observe the effects and mechanisms of Y-box protein 3(YBX3)deletion in brown adipose tissue(BAT)on thermogenesis and energy consumption in mice. Methods The mice were placed in a 4 ℃ environment as a cold stimulation method. Lentiviral infection assay was used to construct a human stromal vascular fraction cell line that overexpresses YBX3 or inhibits YBX3 expression. Oxygen consumption rate was used to assess mitochondrial function. Mouse BAT was injected with YBX3 siRNA(si-Ybx3)to inhibit YBX3 expression in BAT. The oxygen consumption rate, CO2 release rate and energy consumption rate of mice were detected to evaluate the energy metabolism of mice. qRT-PCR, Western blotting, and immunofluorescence staining assays were used to detect peroxisome proliferator-activated receptor gamma coactivator 1α(PGC-1α), uncoupling protein 1(UCP1)and YBX3 expression. HE staining was used to detect the size of lipid droplets of adipocytes in BAT. RNA-binding protein immunoprecipitation was used to extract the mRNA bindsing specifically to YBX3. Next-generation sequencing assay was used to identify mRNA. Dual-luciferase reporter gene systems were used to detect the binding of YBX3 to the target sequence. Results YBX3 expression in BAT of wild-type mice was induced by cold stimulation(P<0.05). Overexpressing YBX3 promoted the expression of the thermogenic gene PGC-1α and UCP1 after human stromal vascular fraction cell line cells being induced into mature brown adipocytes(P<0.05). Silencing YBX3 in human stromal vascular fraction cell line cells inhibited the expression of PGC-1α and UCP1(P<0.05)and mitochondrial oxidative phosphorylation after being induced into mature brown adipocytes(P<0.05). Compared with the control group, mice injected with si-Ybx3 had significantly lower energy consumption(P<0.05), lower body temperature in a cold environment(P<0.05), and lower expression levels of thermogenic genes(P<0.05). The size of lipid droplets in adipocytes increased significantly(P<0.05). Compared with at 25 ℃, the expression of YBX3 in the nucleus of brown adipocytes significantly increased from mice kept at 4 ℃(P<0.05). YBX3 specifically bound to the target sequence in the 3' untranslated region of PGC-1α mRNA(P<0.05). YBX3 specifically bound to PGC-1α and UCP1 promoter regions(P<0.05). Conclusion YBX3 in BAT can affect thermogenesis and energy metabolism by regulating the expressions of PGC-1α and UCP1.

Key words: Y-box binding protein 3, Thermogenesis, Energy expenditure, Brown adipose tissue, Uncoupling protein 1

中图分类号: 

  • R574
[1] Rathmell JC. Obesity, immunity, and cancer[J]. N Engl J Med, 2021, 384(12): 1160-1162.
[2] Sun D, Zhang T, Su SY, et al. Body mass index drives changes in DNA methylation: a longitudinal study[J]. Circ Res, 2019, 125(9): 824-833.
[3] Mahlakõiv T, Flamar AL, Johnston LK, et al. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33[J]. Sci Immunol, 2019, 4(35): eaax0416. doi:10.1126/sciimmunol.aax0416.
[4] Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes[J]. Nat Rev Drug Discov, 2016, 15(9): 639-660.
[5] Wu T, Liu QH, Li YP, et al. Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway[J]. J Exp Med, 2021, 218(6): e20201203. doi:10.1084/jem.20201203.
[6] 梁中昊, 庄向华, 黄珊, 等. 饮食诱导肥胖雌鼠棕色脂肪组织蛋白质组学分析[J]. 山东大学学报(医学版), 2024, 62(2): 10-19. LIANG Zhonghao, ZHUANG Xianghua, HUANG Shan, et al. Proteomic analysis of brown adipose tissue in diet-induced obese female mice[J]. Journal of Shandong University(Health Sciences), 2024, 62(2): 10-19.
[7] Li GL, Xie C, Lu SY, et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota[J]. Cell Metab, 2017, 26(5): 801.
[8] Morigny P, Boucher J, Arner P, et al. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics[J]. Nat Rev Endocrinol, 2021, 17(5): 276-295.
[9] Cheng H, Sebaa R, Malholtra N, et al. Naked mole-rat brown fat thermogenesis is diminished during hypoxia through a rapid decrease in UCP1[J]. Nat Commun, 2021, 12(1): 6801.
[10] Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat[J]. Nat Rev Mol Cell Biol, 2021, 22(6): 393-409.
[11] Chen SZ, Liu XX, Peng C, et al. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity[J]. Cell Metab, 2021, 33(3): 565-580.
[12] Emmett MJ, Lim HW, Jager J, et al. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge[J]. Nature, 2017, 546(7659): 544-548.
[13] Chaudhary A, Chaurasia PK, Kushwaha S, et al. Correlating multi-functional role of cold shock domain proteins with intrinsically disordered regions[J]. Int J Biol Macromol, 2022, 220: 743-753. doi:10.1016/j.ijbiomac.2022.08.100.
[14] Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease[J]. Cell Commun Signal, 2018, 16(1): 63.
[15] 杨明, 邓婷婷, 王雨洁, 等. YBX3通过MAPK途径促进鼻咽癌增殖和生长的实验研究[J]. 实用癌症杂志, 2022, 37(2): 175-180, 224. YANG Ming, DENG Tingting, WANG Yujie, et al. YBX3 promotes the proliferation and tumor growth of nasopharyngeal carcinoma by MAPK pathway[J]. The Practical Journal of Cancer, 2022, 37(2): 175-180, 224.
[16] 孙一鸣. 冷休克蛋白YBX3在结肠癌中调控恶性进展的效应与机制研究[D]. 重庆: 中国人民解放军陆军军医大学, 2023.
[17] Wu RF, Cao ST, Li F, et al. RNA-binding protein YBX1 promotes brown adipogenesis and thermogenesis via PINK1/PRKN-mediated mitophagy[J]. FASEB J, 2022, 36(3): e22219. doi:10.1096/fj.202101810RR.
[18] Xu D, Xu SH, Kyaw AMM, et al. RNA binding protein Ybx2 regulates RNA stability during cold-induced brown fat activation[J]. Diabetes, 2017, 66(12): 2987-3000.
[19] Sun H, Li H, Yan J, et al. Loss of CLDN5 in podocytes deregulates WIF1 to activate WNT signaling and contributes to kidney disease[J]. Nat Commun, 2022, 13(1): 1600.
[20] Chowdhury TA, Kleene KC. Identification of potential regulatory elements in the 5' and 3' UTRs of 12 translationally regulated mRNAs in mammalian spermatids by comparative genomics[J]. J Androl, 2012, 33(2): 244-256.
[21] Cho HT, Kim JH, Lee JH, et al. Effects of Panax ginseng extracts prepared at different steaming times on thermogenesis in rats[J]. J Ginseng Res, 2017, 41(3): 347-352.
[22] Xue C, Lu HY, Liu Y, et al. Trans-ferulic acid-4-β-glucoside alleviates cold-induced oxidative stress and promotes cold tolerance[J]. Int J Mol Sci, 2018, 19(8): 2321.
[23] WU R, FENG S, LI F, et al. Transcriptional and post-transcriptional control of autophagy and adipogenesis by YBX1 [J]. Cell Death Dis, 2023, 14(1): 29.
[24] Rabiee A, Plucińska K, Isidor MS, et al. White adipose remodeling during browning in mice involves YBX1 to drive thermogenic commitment[J]. Mol Metab, 2021, 44: 101137. doi:10.1016/j.molmet.2020.101137.
[25] 卢环宇. RNA结合蛋白QKI在冷暴露激活脂肪产热代谢中的分子调控机制及功能研究[D]. 西安: 中国人民解放军空军军医大学, 2019.
[26] Cooke A, Schwarzl T, Huppertz I, et al. The RNA-binding protein YBX3 controls amino acid levels by regulating SLC mRNA abundance[J]. Cell Rep, 2019, 27(11): 3097-3106.
[27] Wei MT, Zhang YG, Yang XY, et al. Claudin-2 promotes colorectal cancer growth and metastasis by suppressing NDRG1 transcription[J]. Clin Transl Med, 2021, 11(12): e667. doi:10.1002/ctm2.667.
[1] 梁中昊,庄向华,黄珊,韩晓琳,华梦羽,琚丽萍,陈诗鸿. 饮食诱导肥胖雌鼠棕色脂肪组织蛋白质组学分析[J]. 山东大学学报 (医学版), 2024, 62(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[2] 李淑玲1,邢毅2,李育竹1,巩丽1,李辉3. 不忘散对去卵巢大鼠雌激素水平和海马组织炎症反应的影响[J]. 山东大学学报(医学版), 2011, 49(3): 50 -54 .
[3] 李传刚,张东海,赵俏静,潘晓军 . 氯胺酮联合硬膜外麻醉用于腹腔镜胆囊切除术的疗效研究[J]. 山东大学学报(医学版), 2007, 45(2): 207 -209 .
[4] 孔大伟,庞 琦,许尚臣,司志超,王汉斌,朱玉方. 人脑桥静脉流出端肌性超微结构及其对颅内压的作用
[J]. 山东大学学报(医学版), 2008, 46(8): 763 -765 .
[5] 王学萍,杨洪玲. 洛汀新治疗高血压50例报告[J]. 山东大学学报(医学版), 2007, (2): 213 .
[6] 韩明勇,刘奇,唐步坚,邓砚,曹明峰 . IL-18基因转导乳腺癌细胞肿瘤原性的改变及抗瘤作用的研究[J]. 山东大学学报(医学版), 2007, 45(7): 714 -717 .
[7] 韩梅1,贾存显1,2,邱惠敏3,马吉祥4,路长飞1,刘慧1. 简易应对方式量表评价及其与农村自杀死亡关系研究[J]. 山东大学学报(医学版), 2011, 49(10): 160 -164 .
[8] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[9] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[10] 王胜军1 ,迟兆富1 ,迟令懿2 ,刘学伍1
. 多系统萎缩的临床与MRI特征[J]. 山东大学学报(医学版), 2009, 47(02): 85 -87 .