您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (5): 59-67.doi: 10.6040/j.issn.1671-7554.0.2022.0936

• 临床医学 • 上一篇    

基于影像组学参数评估376例幕上自发性脑出血患者的功能状态

刘艳1,冷珊珊2,夏晓娜1,董昊3,黄陈翠3,孟祥水1   

  1. 1.山东大学齐鲁医院(青岛)放射科, 山东 青岛 266035;2.青岛市市立医院放射科, 山东 青岛 266011;3.北京深睿博联科技有限责任公司研发中心/科研合作部, 北京 100080
  • 发布日期:2023-05-15
  • 通讯作者: 孟祥水. E-mail:xiangshuimeng@163.com
  • 基金资助:
    青岛市医疗卫生重点学科建设项目(QDZDZK-2022-097);青岛市科技惠民项目(20-3-4-37-nsh);山东大学齐鲁医院(青岛)院内科研项目(QDKY2020QN04)

Functional outcomes of 376 patients with supratentorial spontaneous intracerebral hemorrhage based on radiomic parameters

LIU Yan1, LENG Shanshan2, XIA Xiaona1, DONG Hao3, HUANG Chencui3, MENG Xiangshui1   

  1. 1. Department of Radiology, Qilu Hospital(Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, China;
    2. Department of Radiology, Qingdao Municipal Hospital, Qingdao 266011, Shandong, China;
    3. Department of Research Collaboration, R&
    D Center, Beijing Deepwise &
    League of PHD Technology Co., Ltd., Beijing 100080, China
  • Published:2023-05-15

摘要: 目的 探讨基于首次平扫CT的影像组学列线图模型对幕上自发性脑出血患者90 d功能状态的预测价值。 方法 回顾性分析幕上自发性脑出血(sICH)患者376例,根据90 d改良Rankin量表(mRS)评分结果将患者分为预后不良组121例(mRS评分为4~6分)和预后良好组255例(mRS评分为0~3分)。从首次平扫CT提取影像组学特征,计算影像组学评分(Rad-score)并构建影像组学模型。分析筛选临床因素用于构建临床模型,并结合Rad-score构建列线图模型。分析比较上述3种模型的预测效能。 结果 最终筛选出20个特征用于构建影像组学模型,临床模型由年龄(OR=1.045,95%CI: 1.023~1.066)、格拉斯哥昏迷评分GCS≤8(OR=4.128,95%CI: 2.161~7.887)、血肿破入脑室(OR=3.071,95%CI: 1.744~5.408)和血肿体积>30 mL(OR=5.802,95%CI: 3.327~10.117)构成。在训练集,列线图模型的曲线下面积(0.892)高于临床模型(0.814)及影像组学模型(0.862),差异有统计学意义(Z值分别为3.356、2.231,P值分别为0.001、0.026)。 结论 列线图模型可有效预测幕上sICH患者的90 d预后,有助于临床决策。

关键词: 自发性脑出血, 影像组学, 列线图, 预后

Abstract: Objective To investigate the value of a radiomic nomogram model based on initial CT scan to predict the 90-day functional outcomes of supratentorial spontaneous intracerebral hemorrhage(sICH). Methods Clinical data of 376 patients with supratentorial sICH were retrospectively analyzed. According to the 90-day modified Rankin Scale(mRS), the patients were divided into poor outcome group(n=121, mRS score 4-6)and good outcome group(n=255, mRS score 0-3). Radiomic features were extracted from the initial CT scan, radiomic score(Rad-score)was calculated and a radiomic model was constructed. The clinical risk factors of poor outcome were selected to construct a clinical model, and then combined with Rad-score to construct a nomogram model. The diagnostic values of the three models were compared. Results Altogether 20 features were selected to establish the radiomic model. The clinical model was composed of age(OR=1.045, 95%CI: 1.023-1.066), Glasgow Coma Scale(GCS)≤8(OR=4.128, 95%CI: 2.161-7.887), hematoma breaking into ventricle(OR=3.071, 95%CI: 1.744-5.408)and hematoma volume >30 mL(OR=5.802, 95%CI: 3.327-10.117). In the training set, the area under the curve(AUC)of the nomogram model was 0.892, which was higher than that of the clinical model(0.814)and the radiomics model(0.862), and the difference was statistically significant(Z=3.356, 2.231, P=0.000 8, 0.025 7). Conclusion The nomogram model can effectively predict the 90-day outcomes for supratentorial sICH patients, which is helpful for clinical decision-making.

Key words: Spontaneous intraparenchymal hematomas, Radiomics, Nomogram, Prognosis

中图分类号: 

  • R574
[1] 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组. 中国脑出血诊治指南(2019)[J]. 中华神经科杂志, 2019, 52(12): 994-1005. Chinese Society of Neurology, Chinese Stroke Society. Chinese guidelines for diagnosis and treatment of acute intracerebral hemorrhage 2019 [J]. Chinese Journal of Neurology, 2019, 52(12): 994-1005.
[2] van Asch CJ, Luitse MJ, Rinkel GJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis [J]. Lancet Neurol, 2010, 9(2): 167-176.
[3] Moullaali TJ, Wang X, Martin RH, et al. Blood pressure control and clinical outcomes in acute intracerebral haemorrhage: a preplanned pooled analysis of individual participant data [J]. Lancet Neurol, 2019, 18(9): 857-864.
[4] Hemphill JC 3rd, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for Healthcare Professionals From the American Heart Association/American Stroke Association [J]. Stroke, 2015, 46(7): 2032-2060.
[5] Zurasky JA, Aiyagari V, Zazulia AR, et al. Early mortality following spontaneous intracerebral hemorrhage [J]. Neurology, 2005, 64(4): 725-727.
[6] Hemorrhagic Stroke Academia Industry(HEADS)Roundtable Participants. Unmet Needs and Challenges in Clinical Research of Intracerebral Hemorrhage [J]. Stroke, 2018, 49(5): 1299-1307.
[7] Gregório T, Pipa S, Cavaleiro P, et al. Prognostic models for intracerebral hemorrhage: systematic review and meta-analysis [J]. BMC Med Res Methodol, 2018, 18(1): 145.
[8] Rost NS, Smith EE, Chang Y, et al. Prediction of functional outcome in patients with primary intracerebral hemorrhage: the FUNC score [J]. Stroke, 2008, 39(8): 2304-2309.
[9] Yu Z, Zheng J, He M, et al. Accuracy of swirl sign for predicting hematoma enlargement in intracerebral hemorrhage: a meta-analysis [J]. J Neurol Sci, 2019, 399: 155-160. doi:10.1016/j.jns.2019.02.032.
[10] Li Q, Yang WS, Wang XC, et al. Blend sign predicts poor outcome in patients with intracerebral hemorrhage [J]. PLoS One, 2017, 12(8): e0183082. doi: 10.1371/journal.pone.0183082.
[11] Li Q, Yang WS, Chen SL, et al. Black hole sign predicts poor outcome in patients with intracerebral hemorrhage [J]. Cerebrovasc Dis Basel Switz, 2018, 45(1/2): 48-53.
[12] Boulouis G, Morotti A, Brouwers HB, et al. Noncontrast computed tomography hypodensities predict poor outcome in intracerebral hemorrhage patients [J]. Stroke, 2016, 47(10): 2511-2516.
[13] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data [J]. Radiology, 2016, 278(2): 563-577.
[14] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 2012, 48(4): 441-446.
[15] Xie H, Ma S, Wang X, et al. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model [J]. Eur Radiol, 2020, 30(1): 87-98.
[16] Li H, Xie Y, Liu H, et al. Non-contrast CT-based radiomics score for predicting hematoma enlargement in spontaneous intracerebral hemorrhage [J]. Clin Neuroradiol, 2022, 32(2): 517-528.
[17] 陈媛媛, 周治明, 王世科, 等. 临床-影像组学联合模型预测自发性脑出血后早期血肿扩大的研究[J]. 中华神经医学杂志, 2021, 20(11): 1117-1123. CHEN Yuanyuan, ZHOU Zhiming, WANG Shike, et al. Clinical-radiomics combined model in prediction of early hematoma expansion after spontaneous intracerebral hemorrhage [J]. Chinese Journal of Neuromedicine, 2021, 20(11): 1117-1123.
[18] Xia X, Ren Q, Cui J, et al. Radiomics for predicting revised hematoma expansion with the inclusion of intraventricular hemorrhage growth in patients with supratentorial spontaneous intraparenchymal hematomas [J]. Ann Transl Med, 2022, 10(1): 8.
[19] Hanley DF, Lane KR, McBee N, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial [J]. Lancet, 2017, 389(10069): 603-611.
[20] Qureshi AI, Palesch YY, Barsan WG, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage [J]. N Engl J Med, 2016, 375(11): 1033-1043.
[21] 熊星, 王佳, 戴瑶, 等. 基于CT平扫的放射组学列线图鉴别动静脉畸形脑出血与原发性脑出血的价值[J]. 中华放射学杂志, 2021, 55(8): 799-804. XIONG Xing, WANG Jia, DAI Yao, et al. The value of radiomics nomogram based on CT in differentiating arteriovenous malformation cerebral hemorrhage from primary cerebral hemorrhage [J]. Chinese Journal of Radiology, 2021, 55(8): 799-804.
[22] Yogendrakumar V, Ramsay T, Fergusson D, et al. New and expanding ventricular hemorrhage predicts poor outcome in acute intracerebral hemorrhage [J]. Neurology, 2019, 93(9): e879-e888. doi: 10.1212/WNL.0000000000008007.
[23] Ji R, Shen H, Pan Y, et al. A novel risk score to predict 1-year functional outcome after intracerebral hemorrhage and comparison with existing scores [J]. Crit Care, 2013, 17(6): R275. doi: 10.1186/cc13130.
[24] Hemphill JC 3rd, Bonovich DC, Besmertis L, et al. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage [J]. Stroke, 2001, 32(4): 891-897.
[25] Rådholm K, ARIMA H, Lindley RI, et al. Older age is a strong predictor for poor outcome in intracerebral haemorrhage: the INTERACT2 study [J]. Age Ageing, 2015, 44(3): 422-427.
[26] Pszczolkowski S, Manzano-Patrón JP, Law ZK, et al. Quantitative CT radiomics-based models for prediction of haematoma expansion and poor functional outcome in primary intracerebral haemorrhage [J]. Eur Radiol, 2021, 31(10): 7945-7959.
[27] Broderick JP, Brott TG, Duldner JE, et al. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality [J]. Stroke, 1993, 24(7): 987-993.
[28] Zhou Z, Zhou H, Song Z, et al. Location-specific radiomics score: novel imaging marker for predicting poor outcome of deep and lobar spontaneous intracerebral hemorrhage [J]. Front Neurosci, 2022, 16:829130. doi: 10.3389/fnins.2022.829130.
[29] 王霁雯, 林雨, 熊建华, 等. 基于深度学习的自发性脑出血CT影像分割算法精准计算病灶体积的应用探讨[J]. 中华放射学杂志, 2019, 53(11): 941-945. WANG Jiwen, LIN Yu, XIONG Jianhua, et al. Evaluation of spontaneous intracerebral hemorrhage by using CT image segmentation and volume assessment based on deep learning [J]. Chinese Journal of Radiology, 2019, 53(11): 941-945.
[30] Xia X, Zhang X, Huang Z, et al. Automated detection of 3D midline shift in spontaneous supratentorial intracerebral haemorrhage with non-contrast computed tomography using deep convolutional neural networks [J]. Am J Transl Res, 2021, 13(10): 11513-11521.
[31] Maas MB, Berman MD, Guth JC, et al. Neurochecks as a biomarker of the temporal profile and clinical impact of neurologic changes after intracerebral hemorrhage [J]. J Stroke Cerebrovasc Dis, 2015, 24(9): 2026-2031.
[32] Song Z, Tang Z, Liu H, et al. A clinical-radiomics nomogram may provide a personalized 90-day functional outcome assessment for spontaneous intracerebral hemorrhage [J]. Eur Radiol, 2021, 31(7): 4949-4959.
[33] Øie LR, Madsbu MA, Solheim O, et al. Functional outcome and survival following spontaneous intracerebral hemorrhage: a retrospective population-based study [J]. Brain Behav, 2018, 8(10): e01113. doi: 10.1002/brb3.1113.
[34] Bhattathiri PS, Gregson B, Prasad KS, et al. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial [J]. Acta Neurochir Suppl, 2006, 96: 65-68. doi:10.1007/3-211-30714-1_16.
[35] Hanley DF. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage [J]. Stroke, 2009, 40(4): 1533-1538.
[36] Garton T, Keep RF, Wilkinson DA, et al. Intraventricular hemorrhage: the role of blood components in secondary injury and hydrocephalus [J]. Transl Stroke Res, 2016, 7(6): 447-451.
[37] Xu W, Ding Z, Shan Y, et al. A nomogram model of radiomics and satellite sign number as imaging predictor for intracranial hematoma expansion [J]. Front Neurosci, 2020, 14: 491. doi: 10.3389/fnins.2020.00491.
[38] Morotti A, Boulouis G, Romero JM, et al. Blood pressure reduction and noncontrast CT markers of intracerebral hemorrhage expansion [J]. Neurology, 2017, 89(6): 548-554.
[1] 李兆辉,李亮,周飞,郑超,周文重,王斐,余之刚. 乳腺炎性肌纤维母细胞瘤1例及文献回顾[J]. 山东大学学报 (医学版), 2023, 61(4): 121-124.
[2] 胡立勇,钟浩,房娟娟,国巍,张雨露,范医东. 基于数据库分析CCR基因对肾透明细胞癌预后的预测价值[J]. 山东大学学报 (医学版), 2023, 61(4): 49-55.
[3] 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96.
[4] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[5] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[6] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[7] 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122.
[8] 杨粒芝,孙霄,商蒙蒙,郭鲁,时丹丹,李杰. 基于中国版甲状腺影像报告与数据系统的甲状腺结节恶性风险预测模型[J]. 山东大学学报 (医学版), 2022, 60(6): 64-69.
[9] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[10] 袁宏涛,纪淙山,康冰,秦松楠,于鑫鑫,高琳,王锡明. CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值[J]. 山东大学学报 (医学版), 2022, 60(4): 68-75.
[11] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[12] 孔林笑语,孙书珍,余丽春,贾梦文. 188例儿童系统性红斑狼疮5年生存率及预后分析[J]. 山东大学学报 (医学版), 2022, 60(12): 69-76.
[13] 孙振国,田辉. 加速康复外科指导下微创食管癌切除术流程优化之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 33-37.
[14] 朱永村,赵修世,孙楠楠,姚志刚,周星辰,牟坤. 前列腺透明细胞腺癌3例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(11): 102-107.
[15] 时萧寒,李华玉,李峰. 接受Stupp方案治疗的老年胶质母细胞瘤患者预后的影响因素[J]. 山东大学学报 (医学版), 2022, 60(10): 42-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!