山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 121-126.doi: 10.6040/j.issn.1671-7554.0.2022.1321
• 临床医学 • 上一篇
李希1,2,王秉翔3,李娜1,曹丽娜1,李爱华4,冠潇1,张志勉1
LI Xi1,2, WANG Bingxiang3, LI Na1, CAO Lina1, LI Aihua4, GUAN Xiao1, ZHANG Zhimian1
摘要: 目的 探讨下肢外骨骼机器人康复训练对脑卒中偏瘫患者下肢运动功能的影响。 方法 收集54例发病12个月内的脑卒中偏瘫患者,分为试验组27例和对照组27例。对照组患者进行常规康复训练及步行训练,试验组患者进行常规康复训练及下肢外骨骼机器人步行训练。分别于治疗前、治疗2周后和治疗4周后予以步行功能评估,包括6 min步行试验(6MWT)、10 m步行测试(10MWT)和功能性步行分级(FAC);Fugl-Meyer下肢运动评定量表(FMA-LE)评估下肢运动功能;使用运动捕捉系统采集患者的步态时空参数。通过以上各项指标分析两组患者下肢运动功能的变化情况。 结果 (1) 治疗2周和4周后,试验组和对照组患者6MWT、10MWT组内较治疗前均有明显提高,差异有统计学意义(P均<0.05);治疗4周后,两组患者6MWT与治疗2周组内相比有进一步提高,差异有统计学意义(P均<0.001),仅试验组患者10MWT组内较治疗2周比较,差异有统计学意义(P=0.008 5);(2) 治疗2周和4周后,试验组和对照组FAC评级和FMA-LE评分组内较治疗前相比有明显改善,差异有统计学意义(P均<0.01),两组治疗4周后FMA-LE较2周时有更进一步改善,差异有统计学意义(P均<0.001);(3) 治疗4周后,试验组步行周期较治疗前(P=0.003 5)、2周后(P=0.003 2)相比,差异有统计学意义。 结论 下肢外骨骼机器人可有效改善脑卒中偏瘫患者的下肢运动功能、步行功能和步行周期,其疗效与常规步行训练相当。
中图分类号:
[1] Dong S, Fang J, Li Y, et al. The population attributable risk and clustering of stroke risk factors in different economical regions of China[J]. Medicine(Baltimore), 2020, 99(16): 19689. doi: 10.1097/MD.000000000-0019689. [2] Sattelmayer M, Chevalley O, Steuri R, et al. Over-ground walking or robot-assisted gait training in people with. multiple sclerosis: does the effect depend on baseline walking speed and disease related disabilities? Asystematic review and meta-regression[J]. BMC Neurol, 2019, 19(1): 93-106. [3] 包译, 朵强, 张源芮, 等. 下肢康复机器人对缺血性脑卒中恢复期患者步行功能的影响[J]. 中国康复医学杂志, 2022, 37(8): 1079-1083. [4] Louie DR,Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review[J]. J Neuroeng Rehabil, 2016, 13(1): 53-62. [5] Yao J, Sado T, Wang W, et al. The kickstart walk assist system for improving balance and walking function in stroke survivors: a feasibility study[J]. J Neuroeng Rehabil, 2021, 18(1): 42-53. [6] Agarwala P, Salzman SH. Six-minute walk test: clinical role, technique, coding, and reimbursement[J]. Chest, 2020, 157(3): 603-611. [7] Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects[J]. Arch Phys Med Rehabil, 1999, 80(4): 421-427. [8] Sullivan KJ, Tilson JK, Cen SY, et al. Fugl-Meyer assessment of sensorimotor function after stroke: standardized training procedure for clinical practice and clinical trials[J]. Stroke, 2011, 42(2): 427-432. [9] 李宏伟, 张韬, 冯垚娟, 等. 外骨骼下肢康复机器人在脑卒中康复中的应用进展[J]. 中国康复理论与实践, 2017, 23(7): 788-791. LI Hongwei, ZHANG Tao, FENG Yaojuan, et al. Application of exoskeleton-based lower limb rehabilitation robot in stroke rehabilitation(review)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2017, 23(7): 788-791. [10] 刘畅, 郄淑燕, 王寒明, 等. 下肢康复机器人对脑卒中偏瘫患者下肢运动功能与步行能力的效果[J]. 中国康复理论与实践, 2017, 23(6): 696-700. LIU Chang, QIE Shuyan, WANG Hanming, et al. Effect of robot-assisted gait training on lower limb motor function and gait ability in patients with hemiplegia after stroke[J]. Chinese Journal of Rehabilitation Theory and Practice, 2017, 23(6): 696-700. [11] Zhong B, Cao J, McDaid A, et al. Synchronous position and compliance regulation on a bi-joint gait exoskeleton driven by pneumatic muscles[J]. IEEE Trans Autom Sci Eng, 2020, 17(1): 2162-2166. [12] Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review[J]. J Neuroeng Rehabil, 2016, 13(1): 53-62. [13] Kim DH, Kang CS, Kyeong S. Robot-assisted gait training promotes brain reorganization after stroke: a randomized controlled pilot study[J]. Neurorehabilitation, 2020, 46(4): 483-489. [14] Chang WH, Kim MS, Huh JP, et al. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: a randomized controlled study[J]. Neurorehabil Neural Repair, 2012, 26(4): 318-324. [15] 胡安龙, 顾旭东, 吴华, 等. 下肢康复机器人训练对脑卒中患者心肺功能的影响[J]. 中华物理医学与康复杂志, 2018, 40(3): 179-182. HU Anlong, GU Xudong, WU Hua, et al. The effects of robot-assisted lower-limb training on stroke survivors’ cardiopulmonary function[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2018, 40(3): 179-182. [16] Pignolo L, Basta G, Carozzo S, et al. A body—weight-supported visual feedback system for gait recovering in stroke patients: a randomized controlled study[J]. Gait Posture, 2020, 82: 287-293. [17] Chua K, Lim WS, Lim PH, et al. An exploratory clinical study on an automated, speed-sensing treadmill prototype with partial body weight support for hemiparetic gait rehabilitation in subacute and chronic stroke patients[J]. Front Neurol, 2020, 11: 747. doi: 10.3389/fneur.2020. 00747. [18] 施爱梅, 郑琦, 顾旭东, 等. 骨盆辅助式康复机器人训练对急性期脑梗死患者躯干控制及步行功能的影响[J]. 中华物理医学与康复杂志, 2022, 44(8): 695-699. SHI Aimei, ZHENG Qi, GU Xudong, et al. Robotic pelvic assistance better improves trunk control and walking after a stroke[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2022, 44(8): 695-699. [19] Lee SH, Lee HJ, Shim Y, et al. Wearable hip-assist robot modulates cortical activation during gait in stroke patients: a functional near-infrared spectroscopy study[J]. J Neuroeng Rehabil, 2020, 17(1): 145. doi: 10.1186/s12984 - 020-00777-0. [20] Calabrò RS, Naro A, Russo M, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial[J]. J Neuroeng Rehabil, 2018, 15(1): 35. doi: 10.1186/s12984-018-0377-8. [21] 龙建军, 王玉龙, 王同, 等.下肢外骨骼康复机器人对偏瘫患者步态参数的影响[J]. 中国康复医学杂志, 2021, 36(9): 1107-1110. LONG Jianjun, WANG Yulong, WANG Tong, et al. Effects of lower limb exoskeleton robot on gait parameters in hemiplegic patients[J]. Chinese Journal of Rehabilitation Medicine, 2021, 36(9): 1107-1110. [22] Husemann B, Miiller F, Krewer C, et al. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study[J]. Stroke, 2007, 38(2): 349-354. [23] Tays G, Bao S, Javidialsaadi M, et al. Consolidation of use-dependent motor memories induced by passive movement training[J]. Neurosci Lett, 2020, 732: 135080. doi: 10.1016/j. neulet.2020.135080. [24] Patterson KK, Mansfield A, Biasin L, et al. Longitudinal changes in poststroke spatiotemporal gait asymmetry over inpatient rehabilitation[J]. Neurorehabil Neural Repair, 2015, 29(2): 153-162. [25] 陈芳,季晶,苏彬,等.平地行走式下肢外骨骼机器人对脑卒中患者步行功能的影响[J]. 中华物理医学与康复杂志, 2022, 44(6): 497-502. CHEN Fang, JI Jing, SU Bin, et al. An exoskeleton robot can help improve the walking ability of stroke survivors[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2022, 44(6): 497-502. [26] Li Y, Fan T, Qi Q, et al. Efficacy of a novel exoskeletal robot for locomotor rehabilitation in stroke patients: a multi-center, non-inferiority, randomized controlled trial[J]. Front Aging Neurosci, 2021, 13: 706569. doi: 10.3389/fnagi. 2021.706569. |
[1] | 房启迪,杨淑霞,齐畅,程传龙,韩闯,刘盈,崔峰,李秀君. 基于镇街尺度的淄博市2019年脑卒中时空分布[J]. 山东大学学报 (医学版), 2022, 60(2): 81-88. |
[2] | 赵璇,李晓鹏,李剑,田彬,王广君. 磁珠耳穴贴压联合重复经颅磁刺激对脑卒中后抑郁的疗效[J]. 山东大学学报 (医学版), 2022, 60(1): 65-70. |
[3] | 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61-66. |
[4] | 陈希,刘新宇,范立霞,田永昊,原所茂. 老年脊柱疾病应用颈动脉超声评估缺血性脑卒中风险的临床价值[J]. 山东大学学报 (医学版), 2019, 57(5): 48-55. |
[5] | 郝小蕊,赵昌盛. 肠内和肠外营养支持对早期重症脑卒中患者血清ALT、SCr浓度变化及并发症的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 80-84. |
[6] | 王纪传,刘瑞红,李东芝,薛付忠. 地理加权回归在脑卒中病因探索中的应用[J]. 山东大学学报(医学版), 2017, 55(8): 88-94. |
[7] | 李敏,王春霞,夏冰,朱茜,孙苑潆,王淑康,薛付忠,贾红英. 健康管理人群脑卒中风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 93-97. |
[8] | 曲立新,时兴华,杜怡峰. 急性缺血性脑卒中患者血浆PMP及EMP含量与预后的相关性[J]. 山东大学学报(医学版), 2016, 54(12): 32-36. |
[9] | 陈海丽, 顾娇阳, 张文静, 袁琳冉, 郑娟, 袁中瑞. 经典Wnt信号通路在大鼠脑缺血后血管新生中的作用[J]. 山东大学学报(医学版), 2015, 53(4): 31-36. |
[10] | 郑娟, 李政, 张文静, 袁琳冉, 樊书菠, 刘玉刚, 袁中瑞. Caveolin-1对脑缺血大鼠血管新生的影响[J]. 山东大学学报(医学版), 2015, 53(10): 16-20. |
[11] | 刘结梅, 黄国志, 刘健, 蔡奇芳. 早期康复治疗对脑卒中后肩手综合征及 上肢运动功能的影响[J]. 山东大学学报(医学版), 2014, 52(S2): 59-60. |
[12] | 蔡毅,龙发青,曾超胜,苏庆杰,吴海荣,吴映曼,李鹏翔,周经霞,王德生,张余辉. 缺血性脑卒中二级预防中高血压防治的现状及其影响因素[J]. 山东大学学报(医学版), 2013, 51(3): 76-79. |
[13] | 陈瑨1,祁珍华1,江虹1,张灿灿1,江平胤2,党红梅2,赵鹏2,张红静1 . 脑卒中偏瘫患者D型人格特征[J]. 山东大学学报(医学版), 2013, 51(2): 104-. |
[14] | 吴昊1,丰荣杰1,官士兵1,许庆家1,张立山1,李淑媛1,龚维明2,贾堂宏2. 应用步态分析评价足趾缺损对足功能的影响[J]. 山东大学学报(医学版), 2011, 49(4): 154-157. |
[15] | 袁超1,赵敬杰2,刘军莉2,尚伟1. 儿童交替性偏瘫家系ATP1A2基因的检测[J]. 山东大学学报(医学版), 2011, 49(11): 79-. |
|