您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 107-114.doi: 10.6040/j.issn.1671-7554.0.2022.1116

• 临床医学 • 上一篇    

机器人联合三维“C”型臂辅助置钉在44例脊柱侧弯矫形术中的应用价值

李超1,孙小刚2,李昊1,田永昊1,原所茂1,刘新宇1,王连雷1   

  1. 1.山东大学齐鲁医院脊柱外科, 山东 济南 250012;2.滕州市中心人民医院脊柱外科, 山东 滕州 277500
  • 发布日期:2023-03-24
  • 通讯作者: 王连雷. E-mail:wllspine@163.com
  • 基金资助:
    国家自然科学基金(81874022,82172483,82102522);山东省自然科学基金(ZR202102210113);山东省重点研发计划(重大科技创新工程2022CXGC010503);泰山学者工程专项经费资助(tsqu202211317)

Clinical application of robotic-assisted navigation based on 3D C-arm in 44 cases of scoliosis surgery

LI Chao1, SUN Xiaogang2, LI Hao1, TIAN Yonghao1, YUAN Suomao1, LIU Xinyu1, WANG Lianlei1   

  1. 1. Department of Spinal Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Spinal Surgery, Tengzhou Central Peoples Hospital, Tengzhou 277500, Shandong, China
  • Published:2023-03-24

摘要: 目的 分析评价骨科手术机器人联合三维“C”型臂导航辅助下椎弓根螺钉置入在脊柱侧弯矫形手术中的准确性和安全性,并与徒手置钉进行对比。 方法 回顾性分析2016年9月至2022年4月收治的96例脊柱侧弯患者临床资料。44例采用机器人联合三维“C”型臂导航辅助下椎弓根螺钉置入术(机器人组);52例采用徒手透视辅助下椎弓根螺钉置入术(徒手组)。记录手术时间、术中出血量、术中辐射剂量、术后住院时间和术后并发症。通过X线和计算机断层扫描(CT)评估治疗前后脊柱冠状位和矢状位参数变化、顶椎旋转角、术后旋转分级以及椎弓根螺钉置入准确率。 结果 机器人组和徒手组患者术后Cobb角、SVA及顶椎旋转角均较术前改善(P<0.05),且两组术后顶椎旋转改善率及旋转分级差异无统计学意义(P>0.05)。机器人组置钉准确率高于徒手组(96.5% vs 88.6%, P<0.05)。机器人组患者的术中辐射剂量高于徒手组[(4.85±0.44)μSv vs(15.97±2.35)×10-5μSv; P<0.05)]。机器人组外科医生术中辐射剂量低于徒手组[(2.96×±0.75)×10-5μSv vs(6.35×±0.93)×10-5μSv; P<0.05)]。机器人组手术时间多于徒手组[(7.1±2.2)h vs(5.5±1.6 )h; P<0.05]。机器人组和徒手组出血量及术后住院日差异无统计学意义(P>0.05)。 结论 骨科手术机器人联合三维“C”型臂导航有效地提高了脊柱矫形术中椎弓根螺钉置入的准确性和安全性。

关键词: 机器人手术, “C”型臂, 脊柱侧弯, 矫形, 椎弓根螺钉

Abstract: Objective To evaluate the accuracy and safety of robotic-assisted navigation with three-dimensional(3D)C-arm-assisted pedicle screw insertion for scoliosis surgery and compare it with freehand technique. Methods Clinical data od 96 scoliosis patients were involved, including 44 undergoing robotic-assisted technique(robot group), and 52 patients undergoing freehand technique(freehand group). Operation time, intraoperative blood loss, intraoperative radiation dose, postoperative hospital stay and complications were recorded. Changes in coronal and sagittal position parameters, apex rotation angle, postoperative rotation grade, and pedicle screw placement accuracy were evaluated with X-ray and computed tomography(CT)before and after treatment. Results Cobb angle, SVA and apex rotation angle were improved in both groups(P<0.05), but there was no differences between the two groups in the improvement rate of apex rotation and rotation grade(P>0.05). Compared with the freehand group, the robot group had higher accuracy in pedicle screw placement(96.5% vs 88.6%, P<0.05), higher radiation exposure on patients [(4.85±0.44)μSv vs(15.97×10-5±2.35×10-5)μSv, P<0.05], lower radiation exposure on surgeons [(2.96×10-5±0.75×10-5)μSv vs(6.35×10-5±0.93×10-5)μSv, P<0.05)], and longer operation time [(7.1±2.2)h vs(5.5±1.6)h, P<0.05]. There were no significant differences in blood loss and postoperative stay between the two groups. Conclusion Robotic-assisted navigation based on 3D C-arm effectively increases the accuracy and safety of pedicle screw insertion in scoliosis surgery.

Key words: Robotic surgery, C-arm, Scoliosis, Scoliosis surgery, Pedicle screw

中图分类号: 

  • R687
[1] Kane WJ. Scoliosis prevalence: a call for a statement of terms[J]. Clin Orthop Relat Res, 1977(126): 43-46.
[2] Matsumoto M, Watanabe K, Hosogane N, et al. Updates on surgical treatments for pediatric scoliosis[J]. J Orthop Sci, 2014, 19(1): 6-14.
[3] Papin P, Arlet V, Marchesi D, et al. Unusual presentation of spinal cord compression related to misplaced pedicle screws in thoracic scoliosis[J]. Eur Spine J, 1999, 8(2): 156-159.
[4] Liljenqvist UR, Halm HF, Link TM. Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis[J]. Spine(Phila Pa 1976), 1997, 22(19): 2239-2245.
[5] Kotani T, Akazawa T, Sakuma T, et al. Accuracy of powered surgical instruments compared with manual instruments for pedicle screw insertion: evaluation using o-arm-based navigation in scoliosis surgery[J]. J Orthop Sci, 2018, 23(5): 765-769.
[6] Zhao Y, Yuan S, Tian Y, et al. Risk factors related to superior facet joint violation during lumbar percutaneous pedicle screw placement in minimally invasive transforaminal lumbar interbody fusion(MIS-TLIF)[J]. World Neurosurg, 2020, 139: e716-e723. doi:10.1016/j.wneu.2020.04.118.
[7] Samdani AF, Ranade A, Sciubba DM, et al. Accuracy of free-hand placement of thoracic pedicle screws in adolescent idiopathic scoliosis: how much of a difference does surgeon experience make?[J]. Eur Spine J, 2010, 19(1): 91-95.
[8] Sarlak AY, Tosun B, Atmaca H, et al. Evaluation of thoracic pedicle screw placement in adolescent idiopathic scoliosis[J]. Eur Spine J, 2009, 18(12): 1892-1897.
[9] Dede O, Ward WT, Bosch P, et al. Using the freehand pedicle screw placement technique in adolescent idiopathic scoliosis surgery: what is the incidence of neurological symptoms secondary to misplaced screws?[J]. Spine(Phila Pa 1976), 2014, 39(4): 286-290.
[10] Hicks JM, Singla A, Shen FH, et al. Complications of pedicle screw fixation in scoliosis surgery: a systematic review[J]. Spine(Phila Pa 1976), 2010, 35(11): E465-E470.
[11] Suk SI, Lee SM, Chung ER, et al. Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis: more than 5-year follow-up[J]. Spine(Phila Pa 1976), 2005, 30(14): 1602-1609.
[12] Nolte LP, Zamorano L, Visarius H, et al. Clinical evaluation of a system for precision enhancement in spine surgery[J]. Clin Biomech(Bristol, Avon), 1995, 10(6): 293-303.
[13] Park P, Foley KT, Cowan JA, et al. Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: Feasibility, technique, and preliminary results[J]. Surg Neurol Int, 2010, 1: 44. doi:10.4103/2152-7806.68705.
[14] Kotani T, Akazawa T, Sakuma T, et al. Accuracy of pedicle screw placement in scoliosis surgery: a comparison between conventional computed tomography-based and O-arm-based navigation techniques[J]. Asian Spine J, 2014, 8(3): 331-338.
[15] Wolf A, Shoham M, Michael S, et al. Feasibility study of a mini, bone-attached, robotic system for spinal operations: analysis and experiments[J]. Spine(Phila Pa 1976), 2004, 29(2): 220-228.
[16] Fujishiro T, Nakaya Y, Fukumoto S, et al. Accuracy of pedicle screw placement with robotic guidance system: a cadaveric study[J]. Spine(Phila Pa 1976), 2015, 40(24): 1882-1889.
[17] Kim HJ, Lee SH, Chang BS, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test[J]. Spine(Phila Pa 1976), 2015, 40(2): 87-94.
[18] Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study[J]. Spine(Phila Pa 1976), 2010, 35(24): 2109-2115.
[19] Han X, Tian W, Liu Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. J Neurosurg Spine, 2019: 1-8. doi:10.3171/2018.10.spine18487.
[20] Ho EK, Upadhyay SS, Chan FL, et al. New methods of measuring vertebral rotation from computed tomographic scans. An intraobserver and interobserver study on girls with scoliosis[J]. Spine(Phila Pa 1976), 1993, 18(9): 1173-1177.
[21] Upasani VV, Chambers RC, Dalal AH, et al. Grading apical vertebral rotation without a computed tomography scan: a clinically relevant system based on the radiographic appearance of bilateral pedicle screws[J]. Spine(Phila Pa 1976), 2009, 34(17): 1855-1862.
[22] Neo M, Sakamoto T, Fujibayashi S, et al. The clinical risk of vertebral artery injury from cervical pedicle screws inserted in degenerative vertebrae[J]. Spine(Phila Pa 1976), 2005, 30(24): 2800-2805.
[23] Schizas C, Michel J, Kosmopoulos V, et al. Computer tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization[J]. Eur Spine J, 2007, 16(5):613-617.
[24] Kim HJ, Kang KT, Chun HJ, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial[J]. Int J Med Robot, 2018, 14(4): e1917. doi: 10.1002/rcs.1917.
[25] Chang M, Wang L, Yuan S, et al. Percutaneous endoscopic robot-assisted transforaminal lumbar interbody fusion(PE RA-TLIF)for lumbar spondylolisthesis: a technical note and two years clinical results[J]. Pain Physician, 2022, 25(1): E73-E86.
[26] Mendelsohn D, Strelzow J, Dea N, et al. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation[J]. Spine J, 2016, 16(3): 343-354.
[27] Sielatycki JA, Mitchell K, Leung E, et al. State of the art review of new technologies in spine deformity surgery-robotics and navigation[J]. Spine Deform, 2022, 10(1): 5-17.
[28] Urbanski W, Jurasz W, Wolanczyk M, et al. Increased radiation but no benefits in pedicle screw accuracy with navigation versus a freehand technique in scoliosis surgery[J]. Clin Orthop Relat Res, 2018, 476(5): 1020-1027.
[29] Yu L, Chen X, Margalit A, et al. Robot-assisted vs freehand pedicle screw fixation in spine surgery-a systematic review and a meta-analysis of comparative studies[J]. Int J Med Robot, 2018, 14(3): e1892. doi:10.1002/rcs.1892.
[30] Sato T, Yonezawa I, Akimoto T, et al. Novel hump measurement system with a 3D camera for early diagnosis of patients with adolescent idiopathic scoliosis: a study of accuracy and reliability[J]. Cureus, 2020, 12(5): e8229. doi:10.7759/cureus.8229.
[31] Zhao Y, Yuan S, Tian Y, et al. Uniplanar cannulated pedicle screws in the correction of lenke type 1 adolescent idiopathic scoliosis[J]. World Neurosurg, 2021, 149: e785-e793. doi:10.1016/j.wneu.2021.01.099.
[32] Kisinde S, Hu X, Hesselbacher S, et al. The predictive accuracy of surgical planning using pre-op planning software and a robotic guidance system[J]. Eur Spine J, 2021, 30(12): 3676-3687.
[33] Kim YJ, Lenke LG, Kim J, et al. Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2006, 31(3): 291-298.
[34] Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement[J]. Eur Spine J, 2011, 20(6): 860-868.
[35] Lieberman IH, Hardenbrook MA, Wang JC, et al. Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system[J]. J Spinal Disord Tech, 2012, 25(5): 241-248.
[36] Molliqaj G, Schatlo B, Alaid A, et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery[J]. Neurosurg Focus, 2017, 42(5): E14. doi:10.3171/2017.3.focus179.
[37] Pechlivanis I, Kiriyanthan G, Engelhardt M, et al. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement[J]. Spine(Phila Pa 1976), 2009, 34(4): 392-398.
[38] Sarwahi V, Sugarman EP, Wollowick AL, et al. Prevalence, distribution, and surgical relevance of abnormal pedicles in spines with adolescent idiopathic scoliosis vs. no deformity: a CT-based study[J]. J Bone Joint Surg Am, 2014, 96(11): e92. doi:10.2106/jbjs.m.01058.
[39] Sudarshan P, Panda A, Paramasivam A, et al. Pedicle Morphometric Analysis in Adolescent Idiopathic Scoliosis: Importance of Surgeon Familiarity with Patient Specific Variables[J]. Global Spine J. 2016, 6(Suppl 1): s-0036-1583041-s-0036-1583041. doi:10.1055/s-0036-1583041.
[40] Brink RC, Schlösser TPC, Colo D, et al. Asymmetry of the vertebral body and pedicles in the true transverse plane in adolescent idiopathic scoliosis: a CT-based study[J]. Spine Deform, 2017, 5(1): 37-45.
[41] Guzek RH, Mitchell SL, Krakow AR, et al. Morphometric analysis of the proximal thoracic pedicles in Lenke II and IV adolescent idiopathic scoliosis: an evaluation of the feasibility for pedicle screw insertion[J]. Spine Deform, 2021, 9(6): 1541-1548.
[1] 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89.
[2] 王政,孙小刚,李超,王连雷,李冬来,原所茂,田永昊,刘新宇. 机器人辅助MIS-TLIF与徒手开放TLIF治疗腰椎退行性疾病的比较:2年随访[J]. 山东大学学报 (医学版), 2023, 61(3): 97-106.
[3] 匡风霞,赵晓虹,韩宝佳,高成杰. 对控制机器人甲状腺癌根治术患者手术应激反应麻醉深度的探讨[J]. 山东大学学报 (医学版), 2022, 60(5): 81-86.
[4] 庄大勇,贺青卿,李小磊,周鹏,岳涛,徐婧. 达芬奇机器人在儿童及青少年甲状腺癌中的应用[J]. 山东大学学报 (医学版), 2021, 59(1): 45-48.
[5] 赵健,韩晓玲,王刚,刘江,周嘉晖,王海锋,江志伟,黎介寿. 多模式止痛对机器人45例远端胃切除术后肠功能的影响[J]. 山东大学学报 (医学版), 2019, 57(9): 43-47.
[6] 关小明,张意茗,范晓东. 单孔腹腔镜技术的发展及展望[J]. 山东大学学报 (医学版), 2019, 57(12): 5-9.
[7] 徐慧荣, 李健宁, 李增军, 徐忠法. 机器人手术与腹腔镜手术在直肠癌低位前切除术中疗效的Meta分析[J]. 山东大学学报(医学版), 2014, 52(7): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!