您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (4): 100-107.doi: 10.6040/j.issn.1671-7554.0.2021.0109

• 临床医学 • 上一篇    下一篇

螺旋CT对黏液性软组织肿瘤良恶性鉴别的价值

赵洁1,李岩1,李明2,于德新1   

  1. 1. 山东大学齐鲁医院放射科, 山东 济南 250012;2. 山东大学附属省立医院检验科, 山东 济南 250021
  • 发布日期:2021-04-30
  • 通讯作者: 于德新. E-mail:yudexin0330@sina.com

Spiral CT in differentiating benign and malignant tumors with myxoid degeneration

ZHAO Jie1, LI Yan1, LI Ming2, YU Dexin1   

  1. 1. Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
  • Published:2021-04-30

摘要: 目的 探讨螺旋动态增强CT检查对黏液性软组织肿瘤良恶性的鉴别诊断价值。 方法 选取2016年8月至2020年3月在山东大学齐鲁医院诊治的147例(男52例,女95例)经病理诊断为黏液性软组织肿瘤患者的临床和CT资料进行回顾性分析。根据病理分为良性组(n=59例)和恶性组(n=88例)。由两名放射科医生评估并记录肿瘤的平扫及三期动态增强CT特征:病灶的长/短径、边界、形状,以及瘤内黏液、实性、钙化和液化坏死成分的分布和数量,有无增强的血管,黏液和实性成分在平扫和各增强期的CT值。分析患者的年龄、性别和病灶部位与上述CT特征对鉴别肿瘤良恶性的价值,根据方差膨胀系数(VIF)检验筛选变量,并建立含不同变量的多因素Logistic 回归预测模型,包括基于分段多项式模式(MFP)的模型0,具完整变量的模型1和基于赤池信息准则(AIC)的模型2,绘制受试者工作特征(ROC)曲线评价模型效能。 结果 患者年龄、病灶的部位、长/短径、边界、形状、瘤内钙化、三期增强的血管、平扫时实性成分CT值在良性和恶性肿瘤之间均差异具有统计学意义(P<0.05); 基于上述临床资料和CT特征变量的Logistic回归模型对良、恶性肿瘤的鉴别具有一定价值(模型0: OR=29.714 3, AUC=0.867 8; 模型1: OR=37.142 9, AUC=0.874 6; 模型2: OR=9.730 8, AUC=0.833 6)结论 利用螺旋CT特征和患者临床资料联合建立的Logistic 回归预测模型可对黏液性软组织肿瘤进行良恶性的鉴别。

关键词: 常规螺旋CT, 黏液样变性, 肿瘤, 良恶性, 预测模型

Abstract: Objective To explore the value of spiral dynamic enhanced CT in differentiating benign and malignant myxoid soft tissue tumors. Methods The clinical and CT data of 147 patients(52 males and 95 females)with myxoid soft tissue tumors diagnosed by pathology in Qilu Hospital of Shandong University from August 2016 to March 2020 were retrospectively analyzed. The patients were divided into the benign group(n=59)and malignant group(n=88). The plain and tri-phasic dynamic enhanced CT features of tumors were evaluated and recorded by two radiologists, including the maximum/minimum diameter, boundary and shape of lesions, distribution and amount of myxoid or solid part, calcification and liquefaction necrosis within the tumor, enhanced blood vessel, and CT values of myxoid and solid components during the plain and enhanced CT phases. Patients age, gender, location of lesions, and CT features were analyzed to assess the differential diagnostic value. After variables were screened with the variance inflation coefficient(VIF), a multivariable Logistic regression prediction model was established, including the model 0 based on multiple fractional polynomial(MFP)model, model 1 with all variables and model 2 based on akakike information criteria(AIC), the receiver-operating characteristic(ROC)curve was drawn to evaluate the effectiveness of the models. Results Patients age, location of lesions, maximum/minimum diameter, tumor boundary, tumor shape, tumor calcification, enhanced vessels in tri-phasic scanning and solid part on plain CT were statistically different between benign and malignant tumors(P<0.05). The Logistic regression prediction model had certain value in the differentiation of benign and malignant tumors(Model 0: OR=29.714 3, AUC=0.867 8; Model 1: OR=37.142 9, AUC=0.874 6; Model 2: OR=9.730 8, AUC=0.833 6). Conclusion The Logistic regression prediction model based on spiral CT features and clinical data of patients can be used to differentiate benign and malignant myxoid soft tissue tumors.

Key words: Spiral CT, Myxoid degeneration, Tumor, Benign or malignant, Prediction model

中图分类号: 

  • R574
[1] Turgeon MK, Cardona K. Soft tissue tumors of the abdomen and retroperitoneum [J]. Surg Clin N Am, 2020, 100(3): 649-667.
[2] Johnson CN, Ha AS, Chen E, et al. Lipomatous soft-tissue tumors [J]. J Am Acad Orthop Surg, 2018, 26(22): 779-788.
[3] Murphey MD, McRae GA, Fanburg-Smith JC, et al. Imaging of soft-tissue myxoma with emphasis on CT and MR and comparison of radiologic and pathologic findings [J]. Radiology vol, 2002, 225(1): 215-224.
[4] Wollmann CG, Thudt K, Kaiser B, et al. Safe performance of magnetic resonance of the heart in patients with magnetic resonance conditional pacemaker systems: the safety issue of the ESTIMATE study [J]. J Cardiovasc Magn Reson, 2014, 16: 30. doi:10.1186/1532-429x-16-30.
[5] Lee G, Park H, Sohn I, et al. Comprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognostication [J]. Oncologist, 2018, 23(7): 806-813.
[6] 张慧红, 乐洪波, 吴先衡, 等. 黏液样软组织肿瘤的CT和MRI表现特征[J]. 中华放射学杂志, 2015, 49(12): 883-888. ZHANG Huihong, LE Hongbo, WU Xianheng, et al. Diagnostic value of CT and MRI in myxoid soft tissue tumours [J]. Chinese Journal of Radiology, 2015, 49(12): 883-888.
[7] Layfield LJ, Dodd L, Klijanienko J. Myxoid neoplasms of bone and soft tissue: a pattern based approach [J]. J Am Soc Cytopathol, 2020(20): 2213-2945. doi: 10.1016/j.jasc.2020.09.009.
[8] Komatsu M, Yoshida A, Tanaka K, et al. Intracranial myxoid mesenchymal tumor with EWSR1-CREB1 gene fusion: a case report and literature review [J]. Brain Tumor Pathol, 2020, 37(2): 76-80.
[9] Felty CC, Jackson CR, Marotti JD, et al. Fine needle aspiration of malignant melanoma with myxoid features: a case report with molecular analysis [J]. Diagn Cytopathol, 2020, 48(4): 390-395.
[10] Rastrelli M, Tropea S, Basso U, et al. Soft tissue limb and trunk sarcomas: diagnosis, treatment and follow-up [J]. Anticancer Res, 2014, 34(10): 5251-5262.
[11] Casali PG, Blay JY, Experts ECPO. Soft tissue sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J]. Ann Oncol, 2010, 21(Suppl 5): 198-203.
[12] Stoeckle E, Coindre JM, Kind M, et al. Evaluating surgery quality in soft tissue sarcoma [J]. Recent Results Cancer Res, 2009, 179: 229-242. doi: 10.1007/978-3-540-77960-5_14.
[13] Stoeckle E, Italiano A, Stock N, et al. Surgical margins in soft tissue sarcoma [J]. Bull Cancer, 2008, 95(12): 1199-1204.
[14] Stoeckle E, Gardet H, Coindre JM, et al. Prospective evaluation of quality of surgery in soft tissue sarcoma [J]. Eur J Surg Oncol, 2006, 32(10): 1242-1248.
[15] Harish S, Lee JC, Ahmad M, et al. Soft tissue masses with cyst-like appearance on MR imaging: distinction of benign and malignant lesions [J]. Eur Radiol, 2006, 16(12): 2652-2660.
[16] Peterson KK, Renfrew DL, Feddersen RM, et al. Magnetic resonance imaging of myxoid containing tumors [J]. Skeletal Radiol, 1991, 20(4): 245-250.
[17] Kim JH. Multicollinearity and misleading statistical results [J]. Korean J Anesthesiol, 2019, 72(6): 558-569.
[18] Yu H, Jiang S, Land KC. Multicollinearity in hierarchical linear models [J]. Soc Sci Res, 2015, 53: 118-136. doi: 10.1016/j.ssresearch.2015.04.008.
[19] Weaving D, Jones B, Ireton M, et al. Overcoming the problem of multicollinearity in sports performance data: a novel application of partial least squares correlation analysis [J]. PLoS One, 2019, 14(2): e0211776. doi: 10.1371/journal.pone.0211776.
[20] Marcoulides KM, Raykov T. Evaluation of variance inflation factors in regression models using latent variable modeling methods [J]. Educ Psychol Meas, 2019, 79(5): 874-882.
[21] Sivanandam A, Siva S, Bhandari M, et al. Variance inflation in sequential calculations of body surface area, plasma volume, and prostate-specific antigen mass [J]. BJU Int, 2008, 102(11): 1573-1580. doi: 10.1111/j.1464-410X.2008.07883.x.
[22] Teerenstra S, Taljaard M, Haenen A, et al. Sample size calculation for stepped-wedge cluster-randomized trials with more than two levels of clustering[J]. Clin Trials, 2019, 16(3): 225-236.
[23] Portet S. A primer on model selection using the Akaike Information Criterion[J]. Infect Dis Model, 2020, 5: 111-128. doi: 10.1016/j.idm.2019.12.010.
[24] Kudo S, Fujimoto M, Sato T, et al. Determination of the optimal number of linked rigid-bodies of the trunk during walking and running based on Akaikes information criterion [J]. Gait Posture, 2020, 77: 264-268. doi: 10.1016/j.gaitpost.2020.02.009.
[25] Zanini A, Woodbury AD. Contaminant source reconstruction by empirical Bayes and Akaikes Bayesian Information Criterion [J]. J Contam Hydrol, 2016, 185-186: 74-86. doi: 10.1016/j.jconhyd.2016.01.006.
[1] 王伟 王沂峰 张岭梅 林琼燕 黄菊. 人卵巢癌OVCAR3细胞系中侧群细胞的分离及其成瘤性、侵袭性的实验研究[J]. 山东大学学报(医学版), 2209, 47(6): 8-11.
[2] 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61.
[3] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[4] 黄方 康瑞 吴春林. VEGFC、NF-κBp65及Survivin在鼻咽癌中的表达及临床意义[J]. 山东大学学报(医学版), 2209, 47(6): 83-.
[5] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[6] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[7] 孙文雄,吴日超,郑贤静,李丽, 张友忠. 宫颈血管周上皮样细胞肿瘤1例[J]. 山东大学学报 (医学版), 2022, 60(9): 125-128.
[8] 吴瑞芳,李长忠. 女性生育力保护的现状与进展[J]. 山东大学学报 (医学版), 2022, 60(9): 1-7.
[9] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[10] 张艺馨,赵玉立,封丽. 超声特征及术前CA-125联合对51例卵巢交界性及Ⅰ期恶性肿瘤的鉴别诊断[J]. 山东大学学报 (医学版), 2022, 60(7): 104-109.
[11] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[12] 宋钰峰,宁豪,姚志刚,吴海虎,刘非凡,吕家驹. 肾上腺海绵状血管瘤临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(2): 37-42.
[13] 程传龙,杨淑霞,佘凯丽,房启迪,韩闯,刘盈,崔峰,李秀君. 淄博市2018年恶性肿瘤的流行特征及影响因素[J]. 山东大学学报 (医学版), 2022, 60(2): 102-108.
[14] 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120.
[15] 许英杰,吕洪涛,荣风年. 妊娠期外阴血管肌纤维母细胞瘤1例[J]. 山东大学学报 (医学版), 2022, 60(11): 130-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张杰,李振华,孙晋浩,暴丽华,刘岳鹏. 恒定磁场对Schwann细胞氧化损伤的保护作用[J]. 山东大学学报(医学版), 2007, 45(3): 229 -232 .
[2] 郑敏,郝跃伟,刘雪平,赵婷婷. 血小板膜糖蛋白Ibα基因HPA-2、Kozak序列多态性与脑梗死的相关性研究[J]. 山东大学学报(医学版), 2008, 46(3): 292 -295 .
[3] 焦芳芳,刘世青,李飞,李长生,王琴,孙青,鹿伟 . 化瘀理肺方对大鼠肺间质纤维化时Smad7和TGF-β表达的影响[J]. 山东大学学报(医学版), 2007, 45(10): 1054 -1058 .
[4] 赵瑛,颜磊,张辉,于鹏,李明江,赵兴波. 精子相关抗原9在卵巢浆液性上皮肿瘤中的表达[J]. 山东大学学报(医学版), 2012, 50(2): 98 .
[5] 王术芹,齐 峰,吴剑波,孙宝柱. 罗哌卡因对大鼠离体主动脉收缩作用的钙离子调节机制[J]. 山东大学学报(医学版), 2008, 46(8): 773 -776 .
[6] 滕学仁,赵永生,胡光亮,周伦,李建民 . 两种方法保存同种异体髌腱移植重建膝关节交叉韧带的光镜电镜观察[J]. 山东大学学报(医学版), 2008, 46(10): 945 -950 .
[7] 方英立,马玉燕,刘锡梅,周文 . 急诊剖宫产患者围手术期替硝唑合理应用[J]. 山东大学学报(医学版), 2007, 45(10): 995 .
[8] 姜红菊,李润智,王营,徐冬梅,张梅,张运,李继福 . 冠状动脉粥样硬化斑块形态及介入治疗与MMP-9的关系[J]. 山东大学学报(医学版), 2008, 46(10): 966 -970 .
[9] 袁吴敏,赵志伦,王洁贞 . 吸烟和饮酒与颅内肿瘤关系的Meta分析[J]. 山东大学学报(医学版), 2006, 44(11): 1146 -1149 .
[10] 李明霞,王学禹 . 儿童急性播散性脑脊髓炎31例临床与MRI特点[J]. 山东大学学报(医学版), 2008, 46(8): 828 -830 .