山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (3): 19-23.doi: 10.6040/j.issn.1671-7554.0.2017.1208
• • 上一篇
姜先洲,赵海锋
JIANG Xianzhou, ZHAO Haifeng
摘要: 尿液的储存与排空是通过膀胱和尿道的协调活动完成的,这种功能的协调是在大脑、脊髓及周围神经的共同调节下实现的。对膀胱与尿道的神经支配、储尿期和排尿期主要的神经反射和神经中枢做综述。
中图分类号:
[1] Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition[J]. Nat Rev Neurosci, 2008, 9(6): 453-466. [2] Griffiths D. Neural control of micturition in humans: a working model[J]. Nat Rev Urol, 2015, 12(12): 695-705. [3] Danziger ZC, Grill WM. Sensory and circuit mechanisms mediating lower urinary tract reflexes[J]. Auton Neurosci, 2016, 200: 21-28. doi: 10.1016/j.autneu.2015.06.004. Epub 2015 Jun 6. [4] de Groat WC, Wickens C. Organization of the neural switching circuitry underlying reflex micturition[J]. Acta Physiol(Oxf), 2013, 207(1): 66-84. [5] Pidsudko Z. Immunohistochemical characteristics and distribution of neurons in the paravertebral, prevertebral and pelvic ganglia supplying the urinary bladder in the male pig[J]. J Mol Neurosci, 2014, 52(1): 56-70. [6] Pastelín CF, Juárez R, Damaser MS, et al. Neural pathways of somatic and visceral reflexes of the external urethral sphincter in female rats[J]. J Comp Neurol, 2012, 520(14): 3120-3134. [7] Matsui M, Motomura D, Fujikawa T, et al. Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable[J]. J Neurosci, 2002, 22(24): 10627-10632. [8] Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology[J]. Physiol Rev, 2004, 84(3): 935-986. [9] Ferguson AC, Sutton BW, Boone TB, et al. Inhibition of urothelial P2X3 receptors prevents desensitization of purinergic detrusor contractions in the rat bladder[J]. BJU Int, 2015, 116(2): 293-301. [10] Yoshikawa S, Kitta T, Miyazato M, et al. Inhibitory role of the spinal cholinergic system in the control of urethral continence reflex during sneezing in rats[J]. Neurourol Urodyn, 2014, 33(4): 443-448. [11] Shefchyk SJ. Spinal cord neural organization controlling the urinary bladder and striated sphincter[J]. Prog Brain Res, 2002, 137: 71-82. [12] Chughtai B, Thomas D, Kaplan S. α-Blockers, 5-α-Reductase inhibitors, acetylcholine, β3 agonists, and phosphodiesterase-5s in medical management of lower urinary tract symptoms/beign prostatic hyperplasia: how much do thedifferent formulations actually matter in theclasses[J]. Urol Clin North Am, 2016, 43(3): 351-356. [13] Kojima Y, Sasaki S, Hayashi Y, et al. Subtypes of alpha1-adrenoceptors in BPH: future prospects for personalized medicine[J]. Nat Clin Pract Urol, 2009, 6(1): 44-53. [14] Thor KB, de Groat WC. Neural control of the female urethral and anal rhabdosphincters and pelvic floor muscles[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 299(2): 416-438. [15] Tsunoyama K, Sakakibara R, Yamaguchi C, et al. Pathogenesis of reduced or increased bladder sensation[J]. Neurourol Urodyn, 2011, 30(3): 339-343. [16] Bruns TM, Gaunt RA, Weber DJ. Multielectrode array recordings of bladder and perineal primary afferent activity from the sacral dorsal root ganglia[J]. J Neural Eng, 2011, 8(5): 056010. doi: 10.1088/1741-2560/8/5/056010. Epub 2011 Aug 30. [17] Häbler HJ, Jänig W, Koltzenburg M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat[J]. J Physiol, 1990, 425: 545-562. [18] Kadekawa K, Majima T, Shimizu T, et al. The role of capsaicin-sensitive C-fiber afferent pathways in the control of micturition in spinal-intact and spinal cord-injured mice[J]. Am J Physiol Renal Physiol, 2017, 313(3): 796-804. [19] Juszczak K, Ziomber A, Wyczolkowski M, et al. Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic model of overactive bladder in rats[J]. J Physiol Pharmacol, 2009, 60(4): 85-91. [20] Tadic SD, Griffiths D, Schaefer W, et al. Abnormal connections in the supraspinal bladder control network in women with urge urinary incontinence[J]. Neuroimage, 2008, 39(4): 1647-1653. [21] Feber JL, van Asselt E, van Mastrigt R. Neurophysiological modeling of voiding in rats: urethral nerve response to urethral pressure and flow[J]. Am J Physiol, 1998, 274(5): 1473-1481. [22] Birder LA. Urothelial signaling[J]. Handb Exp Pharmacol, 2011,(202): 207-231. doi: 10.1007/978-3-642-16499-6_10. Review. [23] Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition[J]. Nat Rev Neurosci, 2008, 9(6): 453-466. [24] de Groat WC. Mechanisms underlying recurrent inhibition in the sacral parasympathetic outflow to the urinary bladder[J]. J Physiol, 1976, 257(2): 503-513. [25] Thor KB, de Groat WC. Neural control of the female urethral and anal rhabdosphincters and pelvic floor muscles[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 299(2): 416-438. [26] Holstege G. Micturition and the soul[J]. J Comp Neurol, 2005, 493(1): 15-20. [27] Vera PL, Nadelhaft I. Anatomical evidence for two spinal ‘afferent-interneuron-efferent’ reflex pathways involved in micturition in the rat: a ‘pelvic nerve reflex pathway and a ‘sacrolumbar intersegmental’ reflex pathway[J]. Brain research, 2000, 883(1): 107-118. [28] Shefchyk SJ. Spinal cord neural organization controlling the urinary bladder and striated sphincter[J]. Prog Brain Res, 2002, 137: 71-82. [29] De Groat WC, Lalley PM. Reflex firing in the lumbar sympathetic outflow to activation of vesical afferent fibres[J]. The Journal of physiology, 1972, 226(2): 289-309. [30] Holstege G, Mouton LJ. Central nervous system control of micturition[J]. Int Rev Neurobiol, 2003, 56: 123-145. [31] de Groat WC, Fraser MO, Yoshiyama M, et al. Neural control of the urethra[J]. Scand J Urol Nephrol Suppl, 2001(207): 35-43. discussion 106-25. [32] Kruse MN, Mallory BS, Noto H, et al. Properties of the descending limb of the spinobulbospinal micturition reflex pathway in the cat[J]. Brain Res, 1991, 556(1): 6-12 [33] Seth JH, Panicker JN, Fowler CJ. The neurological organization of micturition[J]. Handb Clin Neurol, 2013, 117: 111-117. doi: 10.1016/B978-0-444-53491-0.00010-9. [34] Sugaya K, Ogawa Y, Hatano T, et al. Ascending and descending brainstem neuronal activity during cystometry in decerebrate cats[J]. Neurourology and Urodynamics, 2003, 22(4): 343-350. [35] Lyon TD, Ferroni MC, Kadow BT, et al. Pudendal but not tibial nerve stimulation inhibits bladder contractions induced by stimulation of pontine micturition center in cats[J]. Am J Physiol Regul Integr Comp Physiol, 2016, 310(4): 366-374. [36] Griffiths DJ, Fowler CJ. The micturition switch and its forebrain influences[J]. Acta Physiol(Oxf), 2013, 207(1): 93-109. [37] Blok BF, Holstege G. Ultrastructural evidence for a direct pathway from the pontine micturition center to the parasympathetic preganglionic motoneurons of the bladder of the cat[J]. Neurosci Lett, 1997, 222(3): 195-198. [38] De Groat WC. Nervous control of the urinary bladder of the cat[J]. Brain Res, 1975, 87(2-3): 201-211. [39] Blok BF, De Weerd H, Holstege G. Ultrastructural evidence for a paucity of projections from the lumbosacral cord to the pontine micturition center or M-region in the cat: a new concept for the organization of the micturition reflex with the periaqueductal gray as central relay[J]. J Comp Neur, 1995, 359(2): 300-309. [40] Budai D, Harasawa I, Fields HL. Midbrain periaqueductal gray(PAG)inhibits nociceptive inputs to sacral dorsal horn nociceptive neurons through alpha2-adrenergic receptors[J]. J Neurophysiol, 1998, 80(5): 2244-2254. [41] Takasaki A, Hui M, Sasaki M. Is the periaqueductal gray an essential relay center for the micturition reflex pathway in the cat?[J]. Brain Res, 2010, 1317: 108-115. doi: 10.1016/j.brainres.2009.12.057. Epub 2010 Jan 4. [42] Noto H, Roppolo JR, Steers WD, et al. Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat[J]. Brain Res, 1991, 549(1): 95-105. [43] Tai C, Wang J, Jin T, et al. Brain switch for reflex micturition control detected by FMRI in rats[J]. J Neurophysiol, 2009, 102(5): 2719-2730. [44] Griffiths DJ, Tadic SD, Schaefer W, et al. Cerebral control of the lower urinary tract: how age-related changes might predispose to urge incontinence[J]. Neuroimage, 2009, 47(3): 981-986. [45] 高轶, 廖利民. 大脑高级控尿中枢的功能及其影像学研究进展[J]. 中华泌尿外科杂志, 2015, 36(11): 878-880. GAO Yi, LIAO Limin. Advances in cerebral control and neuroimaging of lower urinary tract[J]. Chinese Journal of Urology, 2015, 36(11): 878-880. |
[1] | 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82. |
[2] | 张雪,白改改,陶国伟,吴海芳,罗霞,刘培淑. 脐尿管未闭导致膀胱脱垂同时合并脐膨出的罕见病例1例[J]. 山东大学学报 (医学版), 2022, 60(2): 115-117. |
[3] | 陈峰,高沛,朱可嘉,丁森泰. 膀胱淋巴上皮瘤样癌1例[J]. 山东大学学报 (医学版), 2022, 60(1): 118-120. |
[4] | 米琦,史爽,李娟,李培龙,杜鲁涛,王传新. 膀胱癌circRNAs介导的ceRNA网络及预后评估模型的构建[J]. 山东大学学报 (医学版), 2021, 59(6): 94-102. |
[5] | 高金梅,张向莲,刘铁菊. 血浆D-二聚体与109例膀胱癌中发生31例转移的关联性分析[J]. 山东大学学报 (医学版), 2021, 59(3): 98-102. |
[6] | 潘虹江,王焕昇,裴发军,杨明山. 孤立性膀胱子宫内膜异位症1例[J]. 山东大学学报 (医学版), 2021, 59(2): 122-124. |
[7] | 史本康. 膀胱过度活动症的诊断及治疗进展[J]. 山东大学学报 (医学版), 2018, 56(3): 1-5. |
[8] | 种铁,陈琦. 米拉贝隆治疗膀胱过度活动症的临床应用[J]. 山东大学学报 (医学版), 2018, 56(3): 6-11. |
[9] | 张秀琳. 膀胱内注射肉毒素治疗膀胱过度活动症的研究进展[J]. 山东大学学报 (医学版), 2018, 56(3): 12-18. |
[10] | 殷雷,殷睿,李文佳,刘帅,吕家驹. CYLD抑制自噬提高膀胱癌细胞吉西他滨化疗敏感性[J]. 山东大学学报(医学版), 2017, 55(8): 1-6. |
[11] | 徐加龙,孙小刚,王军锋,刘倩,马楠,李殿国,陈维秀,李金良,王若义. 经腹腔镜手术与开放手术治疗原发性膀胱憩室临床效果比较[J]. 山东大学学报(医学版), 2017, 55(7): 95-99. |
[12] | 姜士伟,闫磊,唐悦清,任巨超,臧元伟,张永振,顾刚利,徐忠华. 自体管状肉芽组织重建兔全周尿道的功能组织学评估[J]. 山东大学学报(医学版), 2017, 55(11): 15-21. |
[13] | 刘华水,段升军,刘士懂,贾堂宏,贾逢爽. Stoppa入路手术治疗骨盆前环骨折合并后尿道断裂[J]. 山东大学学报(医学版), 2016, 54(8): 88-91. |
[14] | 张东青, 王勇, 陈守臻, 朱耀丰, 史本康. 糖尿病大鼠尿道α1肾上腺素能受体与神经生长因子表达的改变及其对尿道功能的影响[J]. 山东大学学报(医学版), 2015, 53(9): 30-34. |
[15] | 倪永梁, 焦守镔, 朱国栋, 张华勤. 膀胱无功能性副节瘤1例并文献复习[J]. 山东大学学报(医学版), 2015, 53(1): 93-96. |
|