您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2012, Vol. 50 ›› Issue (11): 48-52.

• 基础医学 • 上一篇    下一篇

β-磷酸三钙-脱细胞软骨支架复合兔BMSCs修复膝关节软骨缺损的实验研究

吴军成1,2,吕仁荣1,李龙1,周生儒1,林玲玲1,牛静静1,张林峰1,徐广琪1,霍然1   

  1. 1.山东大学附属省立医院烧伤整形外科, 济南 250021; 2.中国医学科学院整形外科医院整形16科, 北京 100044
  • 收稿日期:2011-10-18 出版日期:2012-11-10 发布日期:2012-11-10
  • 通讯作者: 吕仁荣(1972- ),男,副主任医师,主要从事软骨组织工程研究。
  • 作者简介:吴军成(1979- ),男,硕士研究生,主治医师,主要从事软骨组织工程研究。
  • 基金资助:

    山东省优秀中青年科学家科研奖励基金(2004BS02009)

Experimental study for the repair of knee-joint cartilage defects by
using nano-tricalcium phosphate(N-TCP)artificial bone and
bone marrow mesenchymal stem cells (BMSCs)

WU Jun-cheng1,2, L Ren-rong1, LI Long1, ZHOU Sheng-ru1, LIN Ling-ling1,
NIU Jing-jing1, ZHANG Lin-feng1, XU Guang-qi1, HUO Ran1   

  1. 1. Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China;
    2. 16 Department of Plastic Surgery Hospital, CAMS, PUMC, Beijing 100044, China
  • Received:2011-10-18 Online:2012-11-10 Published:2012-11-10

摘要:

目的   观察纳米磷酸三钙人工骨(β-TCP)、转化生长因子-β(TGF-β)、胰岛素样生长因子-Ⅰ(IGF-Ⅰ)、脱细胞耳软骨(DC)复合软骨细胞修复关节软骨缺损的效果。方法   获取新西兰大白兔骨髓间充质干细胞(BMSCs),培养并体外诱导成软骨细胞,取异体兔耳软骨进行脱细胞处理,与β-TCP形成复合支架作为载体接种软骨细胞,加入TGF-β和IGF-I修复膝关节软骨缺损。实验动物(n=18)分为3组,实验组(n=8)复合支架加入TGF-β和IGF-I,对照组(n=6)仅以复合支架修复缺损,空白组(n=4)不加入任何修复材料。结果   BMSCs在体外生长稳定,增殖能力强,可被诱导为软骨细胞。软骨支架脱细胞完整,软骨陷窝排列有序,复合物植入缺损后第20周,实验组缺损内充填白色半透明新生软骨组织,色泽与正常软骨相似,与周围正常软骨连接良好。结论   β-TCP-DC复合支架有较多的孔隙结构,降解速度快,组织相容性及细胞黏附性好, 是组织工程修复关节软骨理想的种子细胞载体。

Abstract:

Objective   To examine the effects of simultaneous application of Nano-Tricalcium phosphate(N-TCP) artificial bone and bone marrow mesenchymal stem cells(BMSCs)plus the transforming growth factor-β(TGF-β) and insulin-growth factor-Ⅰ(IGF-Ⅰ) in repairing articular cartilage defects. Methods   MSCs isolated from the bone marrow of New Zealand white rabbits were cultured in vitro and induced to chondrocytes. Auricular cartilages of allogenic rabbits were firstly decellularized and then integrated with N-TCP composite artificial bone in forming N-TCP-DC matrix scaffolds. Then the chondrocytes were loaded into the scaffolds. TGF-βand IGF-Ⅰwere added to repair the knee-joint cartilage defects. In experimental animals, 18 knee-joint articular cartilage defects were created. the defects were treated using N-TCP-DC matrix scaffolds with TGF-βand IGF-Ⅰ(n=8) in comparison to controls of N-TCP-DC matrix scaffolds alone(n=6) and no engineered cartilage implants at all(n=4). Results   BMSCs grew stably, reproduced vigorously and could be induced into chondrocytes in vitro. The auricular cartilages were completely decellularized and the cartilage lacunae arrayed orderly. Around the 20th week, with the white translucent scaffold filling the articular cartilage defects, the newly formed cartilage in the experimental group connected well with the normal cartilage revealing similar color with that of the normal cartilage.Conclusion   Being a porous structure, N-TCP-DC matrix scaffold is significant in regard to its rapid degradation ability, good histocompatibility and cell adhesive ability, making it a promising candidate for the cartilage tissue-engineering applications.

Key words: Nano-tricalcium phosphate; Growth factor; Decellularized cartilage; Bone marrow mesenchymal stem cells; Cartilage defects

中图分类号: 

  • &beta
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!