您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2012, Vol. 50 ›› Issue (1): 143-146.

• 论文 • 上一篇    下一篇

主成分-线性判别分析在中药药性识别中的应用

张新新1,李雨1,纪玉佳2,王鹏2,张永清2,薛付忠1   

  1. 1.山东大学公共卫生学院流行病与卫生统计学研究所, 济南 250012;
    2.山东中医药大学药学院, 济南 250355
  • 收稿日期:2011-06-16 出版日期:2012-01-10 发布日期:2012-01-10
  • 通讯作者: 薛付忠(1964- ),男,博士研究生,博士生导师,主要从事中药药性统计分析方法研究。 E-mail: xuefzh@sdu.edu.cn
  • 作者简介:张新新(1987- ),女,硕士研究生,主要从事中药药性识别的统计模式识别模型研究。
  • 基金资助:

    国家重点基础研究发展计划(973计划)课题:中药药性理论相关基础问题研究(2007CB512601)

Discrimination of properties of Chinese Traditional Medicine with
principal component analysis-linear discriminant analysis

ZHANG Xin-xin1, LI YU1, JI Yu-jia2, WANG Peng2, ZHANG Yong-qing2, XUE Fu-zhong1   

  1. 1. Institute of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan 250012, China;
    2. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
  • Received:2011-06-16 Online:2012-01-10 Published:2012-01-10

摘要:

目的   探索利用主成分-线性判别分析基于中药的功效主治属性判别其药性的可行性。方法   收集《中华本草》中收录的药性明确、功效主治属性特征详尽的植物药1725种,首先运用主成分-线性判别建立模型,以此模型对药性进行判别分类,采用10次5折交叉验证评价模型稳定性,然后按照随机抽样的原则,从寒、热性两类药材中分别随机抽取80%(共1380种)的药材作为训练集建立模型,其余20%(共345种)药材组成测试集,做预测。结果   运用主成分-线性判别模型,全部1725种中药的组内判别正确率为94.43%,交叉验证平均正确率为91.54%。训练组的组内回代判别正确率为94.78%,测试组的预测正确率为90.14%。结论   基于主成分-线性判别对中药药性进行判别,不仅保证了线性判别的正常运行,而且判别准确率高,模型稳定性好,能够为临床用药提供依据。

关键词: 主成分-线性判别;中药功效主治;药性;主成分分析;线性判别分析

Abstract:

Objective   To identify the feasibility of principal component analysislinear discriminant analysis (PCA-LDA) to discriminate properties of Traditional Chinese Medicines (TCM) based on their efficacy and indication characters. Methods   Information on efficacies, indications, and properties of 1725 kinds of TCM was collected from “Chinese Herbal Medicine”. PCA-LDA was applied to construct a model and to discriminate properties of TCM based on efficacies and indications of 1725 kinds of TCM. 10 times 5-fold cross-validation was used to evaluate the stability of this model. The overall data was randomly divided into two subsets: 80% of the data (1380 samples) from TCM of cold nature and hot nature as the training set to construct the model, and the remaining 20%(345 samples) as the testing set to evaluate the prediction accuracy. Results   According to the PCA-LDA model, the consistent accuracy was 94.43% for 1725 kinds of TCM, the mean accuracy of 10 times 5-fold cross-validation was 91.54%. The consistent accuracy in the training set was 94.78% and the predication accuracy in the testing set was 90.14%. Conclusion   PCA-LDA discriminating properties of TCM could make sure linear discrimination and guide clinical prescription with high discriminant accuracy and stability.

中图分类号: 

  • R282.5
[1] 钟女娟1,宋咏梅2,刘更生2,薛付忠1,刘言训1. 中药经验要素贝叶斯网络模型构建及应用[J]. 山东大学学报(医学版), 2012, 50(2): 157-.
[2] 齐方1,容蓉2,薛付忠1. 贝叶斯网络模型在中药整体药性特征分析中的应用[J]. 山东大学学报(医学版), 2011, 49(5): 147-152.
[3] 李雨,李骁,薛付忠,刘言训. 基于人工神经网络的中药药性判别研究[J]. 山东大学学报(医学版), 2011, 49(1): 57-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!