您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (3): 41-47.doi: 10.6040/j.issn.1671-7554.0.2020.1448

• 基础医学 • 上一篇    下一篇

HILIC-MS/MS法鉴别肝素和硫酸乙酰肝素

刘冬科1,王凤山1,2   

  1. 1. 山东大学齐鲁医学院药学院生化与生物技术药物研究所 化学生物学教育部重点实验室, 山东 济南 250012;2.山东省糖化学与糖生物学重点实验室, 国家糖工程技术研究中心, 山东 济南 250012
  • 发布日期:2021-04-06
  • 通讯作者: 王凤山. E-mail:fswang@sdu.edu.cn

Identification of heparin and heparan sulfate by HILIC-MS/MS

LIU Dongke1, WANG Fengshan1,2   

  1. 1. Key Laboratory of Chemical Biology(Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Laboratory of Carbohydrate Chemistry and Glycobiology of Shandong Province, National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China
  • Published:2021-04-06

摘要: 目的 建立亲水相互作用色谱-三重四极杆质谱法(HILIC-MS/MS)同时测定肝素及硫酸乙酰肝素经肝素酶Ⅰ、Ⅱ、Ⅲ酶切后产生的双糖含量,为肝素及硫酸乙酰肝素的鉴别提供方法和数据参考。 方法 采用PC HILIC色谱柱(4.6 mm×250 mm,5 μm),以10 mmol/L乙酸铵-水溶液(A)、10 mmol/L乙酸铵-90%乙腈(B)为流动相梯度洗脱,流速0.9 mL/min,柱温40 ℃,进样量10 μL,采用电喷雾电离源、负离子多反应检测模式对肝素及硫酸乙酰肝素酶切后产生的8种双糖进行定量,比较二者的差异。 结果 所测成分在测定摩尔浓度范围内线性关系良好(r2>0.996 0),平均加样回收率为90.34%~99.62%,RSD为4.7%~6.7%,样品测定结果显示肝素与硫酸乙酰肝素双糖组成及比例差异明显。肝素中占比最大的双糖为ΔUA2S-GlcNS6S(TriS),约69.8%;硫酸乙酰肝素中占比最大的双糖为ΔUA-GlcNAc(0S),约51.0%。 结论 该法灵敏度高、稳定性好,简单快捷、准确可靠,可作为肝素与硫酸乙酰肝素的鉴别方法之一。

关键词: 肝素, 硫酸乙酰肝素, 亲水相互作用色谱-质谱, 双糖, 鉴别

Abstract: Objective To establish a hydrophilic interaction chromatography-mass spectrometry(HILIC-MS/MS)method for simultaneous determination of 8 disaccharides in heparin and heparan sulfate after digestion by heparinase Ⅰ, Ⅱ and Ⅲ, and to provide method and data references for the identification of heparin and heparan sulfate. Methods A PC HILIC column(4.6 mm×250 mm, 5 μm)was used and gradiently eluted with 10 mmol/L ammonium acetate aqueous solution(A)and 10 mmol/L ammonium-90% acetonitrile(B)at the flow rate of 0.9 mL/min, column temperature of 40 ℃ and injection volume of 10 μL. The contents of the 8 disaccharides of heparin and heparan sulfate produced by enzymatic digestion were determined by electrospray ionization source and multi reaction monitoring mode and were compared with each other. Results The linear relationships of the 8 components were good in the range of measured molar concentrations(r2>0.996 0), and the average recovery were 90.34%-99.62%, RSD were 4.7%-6.7%. The results showed that the disaccharides composition and proportion of heparin and heparan sulfate were significantly different. In heparin, ΔUA2S-GlcNS6S(TriS)accounted for about 69.8% on average, while in heparan sulfate, ΔUA-GlcNAc(0S)accounted for about 51.0%. Conclusion The method established in this paper is simple, fast, accurate and reliable with high sensitivity, strong specificity, good stability, and can be used as one of the determination and identification methods for heparin and heparan sulfate.

Key words: Heparin, Heparan sulfate, Hydrophilic interaction chromatography-mass spectrometry, Disaccharides, Identification

中图分类号: 

  • R917
[1] Mulloy B, Forster MJ. Conformation and dynamics of heparin and heparan sulfate [J]. Glycobiology, 2000, 10(11): 1147-1156.
[2] Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate [J]. Adv Carbohydr Chem Biochem, 2001, 57: 159-206. doi: 10.1016/s0065-2318(01)57017-1.
[3] Gallagher JT, Walker A. Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides [J]. Biochem J, 1985, 230(3): 665-674.
[4] Rabenstein DL. Heparin and heparan sulfate: structure and function [J]. Nat Prod Rep, 2002, 19(3): 312-331.
[5] Li JP, Kusche-Gullberg M. Heparan sulfate: biosynthesis, structure, and function [J]. Int Rev Cell Mol Biol, 2016, 325: 215-273. doi: 10.1016/bs.ircmb.2016.02.009.
[6] Gandhi NS, Mancera RL. Heparin/heparan sulphate-based drugs [J]. Drug Discov Today, 2010, 15(23-24): 1058-1069.
[7] Fügedi P. The potential of the molecular diversity of heparin and heparan sulfate for drug development [J]. Mini Rev Med Chem, 2003, 3(7): 659-667.
[8] Skidmore MA, Guimond SE, Dumax-Vorzet AF, et al. Disaccharide compositional analysis of heparan sulfate and heparin polysaccharides using UV or high-sensitivity fluorescence(BODIPY)detection [J]. Nat Protoc, 2010, 5(12): 1983-1992.
[9] Viola M, Vigetti D, Karousou E, et al. New electrophoretic and chromatographic techniques for analysis of heparin and heparan sulfate [J]. Electrophoresis, 2008, 29(15): 3168-3174.
[10] Volpi N, Galeotti F, Yang B, et al. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone-labeled disaccharides with LC-fluorescence and LC-MS detection [J]. Nat Protoc, 2014, 9(3): 541-558.
[11] Linhardt RJ. Analysis of glycosaminoglycans with polysaccharide lyases [M] // Ausubel FM, Brent R, Kingston RE, et al. Current Protocols in Molecular Biology. John Wiley & Sons, Inc., 2001, Unit 17.13B.1-16.
[12] Galeotti F, Volpi N. Online reverse phase-high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry separation and characterization of heparan sulfate, heparin, and low-molecular weight-heparin disaccharides derivatized with 2-aminoacridone [J]. Anal Chem, 2011, 83(17): 6770-6777.
[13] Volpi N. High-performance liquid chromatography and on-line mass spectrometry detection for the analysis of chondroitin sulfates/hyaluronan disaccharides derivatized with 2-aminoacridone [J]. Anal Biochem, 2010, 397(1): 12-23.
[14] Wang Z, Li D, Sun X, et al. Liquid chromatography-diode array detection-mass spectrometry for compositional analysis of low molecular weight heparins [J]. Anal Biochem, 2014, 451: 35-41. doi: 10.1016/j.ab.2014.02.005.
[15] Yang B, Chang Y, Weyers AM, et al. Disaccharide analysis of glycosaminoglycan mixtures by ultra-high-performance liquid chromatography-mass spectrometry [J]. J Chromatogr A, 2012, 1225: 91-98. doi: 10.1016/j.chroma.2011.12.063.
[16] Sadowski R, Gadzaa-Kopciuch R, Kowalkowski T, et al. Characterization of low-molecular-weight heparins by strong anion-exchange chromatography [J]. J AOAC Int, 2017, 100(6): 1706-1714.
[17] Miller RL, Guimond SE, Shivkumar M, et al. Heparin isomeric oligosaccharide separation using volatile salt strong anion exchange chromatography [J]. Anal Chem, 2016, 88(23): 11542-11550.
[18] Mourier P, Anger P, Martinez C, et al. Quantitative compositional analysis of heparin using exhaustive heparinase digestion and strong anion exchange chromatography [J]. Anal Chem Res, 2015, 3: 46-53. doi: 10.1016/j.ancr.2014.12.001.
[19] 杜佳燕,黄海月,苏晓明,等.反相液相色谱-电喷雾-离子阱-飞行时间质谱法定量分析N-非取代肝素/硫酸乙酰肝素[J]. 质谱学报, 2019, 40(3): 222-232. DU Jiayan, HUANG Haiyue, SU Xiaoming, et al. Quantitative analysis of N-unsubstitued heparin/heparan sulfate by reversed-phase liquid chromatography-electrospray ionization ion trap-time-of-flight mass spectrometry [J]. J Chin Mass Spectrom Soc, 2019, 40(3): 222-232.
[20] 韩章润,邢新会,于广利,等.临床肝素类药物酶解分析二糖组成[J]. 分析化学, 2015, 43(7): 964-970. HAN Zhangrun, XING Xinhui, YU Guangli, et al. Heparinase digestion-based disaccharide analysis of clinical heparin and heparinoids drug [J]. Chin J Anal Chem, 2015, 43(7): 964-970.
[21] Galeotti F, Volpi N. Novel reverse-phase ion pair-high performance liquid chromatography separation of heparin, heparan sulfate and low molecular weight-heparins disaccharides and oligosaccharides [J]. J Chromatogr A, 2013, 1284: 141-147. doi: 10.1016/j.chroma.2013.02.013.
[22] Yang B, Weyers A, Baik JY, et al. Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis [J]. Anal Biochem, 2011, 415(1): 59-66.
[23] Brustkern AM, Buhse LF, Nasr M, et al. Characterization of currently marketed heparin products: reversed-phase ion-pairing liquid chromatography mass spectrometry of heparin digests [J]. Anal Chem, 2010, 82(23): 9865-9870.
[24] Sun X, Sheng A, Liu X, et al. Comprehensive identification and quantitation of basic building blocks for low-molecular weight heparin [J]. Anal Chem, 2016, 88(15): 7738-7744.
[25] Ouyang Y, Wu C, Sun X, et al. Development of hydrophilic interaction chromatography with quadruple time-of-flight mass spectrometry for heparin and low molecular weight heparin disaccharide analysis [J]. Rapid Commun Mass Spectrom, 2016, 30(2): 277-284.
[26] Sun X, Guo Z, Yu M, et al. Hydrophilic interaction chromatography-multiple reaction monitoring mass spectrometry method for basic building block analysis of low molecular weight heparins prepared through nitrous acid depolymerization [J]. J Chromatogr A, 2017, 1479:121-128. doi: 10.1016/j.chroma.2016.11.061.
[27] Korir AK, Limtiaco JF, Gutierrez SM, et al. Ultraperformance ion-pair liquid chromatography coupled to electrospray time-of-flight mass spectrometry for compositional profiling and quantification of heparin and heparan sulfate [J]. Anal Chem, 2008, 80(4): 1297-1306.
[28] 李春波. AB SCIEX离子淌度差分质谱技术SelexIONTM—极限提高质谱鉴别能力[J]. 现代科学仪器, 2011, 10(5): 163-165. LI Chunbo. AB SCIEX SelexIONTM Technology[J]. Mod Sci Instruments, Modern Scientific Instruments, 2011, 10(5): 163-165.
[29] Daniel G, Beach ESK, Michael A. Quilliam: selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry(HILIC-DMS-MS/MS)[J]. Anal Bioanal Chem, 2015, 407(28): 8397-8409.
[1] 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64.
[2] 查菁,郭婧,左秀丽. 少见类型肠梗阻病因病例报告1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(6): 130-132.
[3] 李祥泽,王先明,宋歌声,崔晶,孙凯,王皓晨,王天成,韩绍奇,田虎. 合并乙肝肝硬化的肝上皮样血管内皮瘤1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(11): 89-95.
[4] 陆梓文,李光兵,郑顺贞,杨洋,刘军. 肝脏胆管腺纤维瘤1例报道[J]. 山东大学学报 (医学版), 2021, 59(11): 120-122.
[5] 刘朝娣,邓凯,靳先文,宋歌声,张成琪. 能谱CT对卵巢原发良恶性肿瘤的鉴别[J]. 山东大学学报 (医学版), 2017, 55(12): 43-50.
[6] 范凤景,张广英,曹淑娟,丁红宇,刘德泉. 声触诊组织量化技术在乳腺肿块定性诊断中的价值[J]. 山东大学学报(医学版), 2016, 54(9): 48-52.
[7] 李进叶,宋歌声,宋吉清,王大伟,靳先文,张成琪. 宝石能谱CT与常规超声对甲状腺结节良恶性诊断价值的对照分析[J]. 山东大学学报(医学版), 2016, 54(3): 81-86.
[8] 王静, 李娟. 无肝素血液透析的疗效及护理体会[J]. 山东大学学报(医学版), 2014, 52(Z1): 185-186.
[9] 段颜, 刘媛媛. 低分子肝素对重度子痫前期合并胎儿生长受限胎盘病理及HO-1表达的影响[J]. 山东大学学报(医学版), 2014, 52(11): 77-80.
[10] 杨显存, 葛彦彦, 刘强, 于斌超. 三维DSA在后交通动脉起始部病变鉴别诊断中的价值[J]. 山东大学学报(医学版), 2014, 52(11): 49-54.
[11] 姜丽丽, 马喆, 马楚云, 何远流, 陶国伟, 刘村, 耿群, 汤婷婷, 王音. 声脉冲辐射力成像技术对甲状腺良、恶性结节的鉴别诊断价值[J]. 山东大学学报(医学版), 2014, 52(10): 72-76.
[12] 马振申1,王大伟2,孙秀彬3,史浩1,庞涛1,董桂青1,张成琪1. 3.0T磁共振对乳腺良恶性病变的定量分析[J]. 山东大学学报(医学版), 2013, 51(9): 79-83.
[13] 刘文亭, 刘同宝. 基于心电图V1及avL导联的窄QRS波群心动过速鉴别诊断流程及应用评价[J]. 山东大学学报(医学版), 2013, 51(9): 67-71.
[14] 王信杰1,杜向阳2. 降钙素原与腺苷脱氨酶联合检测
诊断结核性胸腔积液
[J]. 山东大学学报(医学版), 2012, 50(9): 79-82.
[15] 陆晓恒,郝洪升,孙莉娟,李文捷,宋璇,卢雪峰. 超声内镜对十二指肠囊肿和脂肪瘤的鉴别诊断价值[J]. 山东大学学报(医学版), 2012, 50(3): 100-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王焕亮,孙宝柱,杜洪玫,周长青,张丽. 不同麻醉监测指标调控异丙酚麻醉的比较[J]. 山东大学学报(医学版), 2006, 44(5): 471 -474 .
[2] 黄庆,田辉,李林,梁飞,刘贤锡 . 老年人肺癌组织中鸟氨酸脱羧酶基因表达及其临床意义[J]. 山东大学学报(医学版), 2006, 44(6): 556 -559 .
[3] 朱梅佳,韩巨,王新怡,鹿伟,王爱华,关心华,曹霞,曹秉振. 伴有皮层下梗死和白质脑病的常染色体显性遗传性脑动脉病临床病理研究[J]. 山东大学学报(医学版), 2006, 44(8): 834 -839 .
[4] 宋海岩,武玉玲,张艳萍. 牡蛎提取物对高温致神经管畸形中凋亡细胞的保护作用[J]. 山东大学学报(医学版), 2007, 45(2): 113 -116 .
[5] 王志刚,丁 璇,孙 鹏/sup>,王成伟,郝晓光,潘 顺 . 术前脑血管造影在血管内支架成形术治疗缺血性脑血管病中的应用[J]. 山东大学学报(医学版), 2007, 45(2): 146 -148 .
[6] 曾季平,王丽娜,王立祥,任晓辉,张孟业,夏文,崔行. 氯化锰致PC12细胞损伤的研究[J]. 山东大学学报(医学版), 2006, 44(5): 467 -470 .
[7] 舒雅,齐峰. 下颌角托在肥胖患者全麻诱导中的应用[J]. 山东大学学报(医学版), 2007, 45(10): 1072 -1074 .
[8] 宋永红,马春红,吕红娟,朱传福,聂向民,王玫,刘艳,张萍 . 中国北方汉族人群HLA基因多态性研究[J]. 山东大学学报(医学版), 2007, 45(6): 546 -553 .
[9] 张向丽,刘凤英 . 血清TPA、 sVCAM-1与子痫前期发病关系的初步探讨[J]. 山东大学学报(医学版), 2007, 45(7): 705 -707 .
[10] 于慧1,2 ,陈少华1 ,赵家军2 ,高聆3
. 乙醇对人肝L02细胞糖原和GSK3β、PAMPK的影响[J]. 山东大学学报(医学版), 2009, 47(04): 75 -78 .