山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (12): 7-12.doi: 10.6040/j.issn.1671-7554.0.2018.463
• 临床医学 • 上一篇
邵倩倩1,王景溥2,王庆杰1
SHAO Qianqian1, WANG Jingpu2, WANG Qingjie1
摘要: 目的 分析抗凋亡转录因子(AATF)在肝细胞肝癌(LIHC)中的表达及意义。 方法 分别利用基因表达谱交互式分析(GEPIA)和人类蛋白质图谱(HPA)分析AATF mRNA与蛋白在肝细胞肝癌(LIHC)组织及对照组织的差异表达及定位;通过cBioPortal分析AATF在LIHC基因组改变及与AATF相互作用的蛋白质网络;通过Kaplan-Meier Plotter分析AATF对肝癌患者5年生存期及总生存期的影响;通过Tumor Immune Estimation Resource分析AATF与LIHC患者生存期的相关性。 结果 与对照组织相比,AATF的mRNA(P<0.05)及蛋白表达水平在LIHC组织中显著上调,其蛋白在两种组织的细胞膜及细胞质中均有定位。AATF的基因组改变在LIHC中发生率很低。与AATF相互作用的蛋白有ATM丝氨酸/苏氨酸激酶、检查点激酶2(CHEK2)等,主要参与调控细胞周期、细胞凋亡及转录调控等过程。AATF mRNA表达水平与LIHC患者的预后呈负相关(log-rank P=0.003)。 结论 AATF在LIHC组织中高表达,且与患者不良预后相关。
中图分类号:
[1] Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2012, 379(9822): 1245-1255. [2] Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives[J]. Gut, 2014, 63(5): 844-855. [3] Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005[J]. J Clin Oncol, 2009, 27(9): 1485-1491. [4] Lindfors K, Halttunen T, Huotari P, et al. Identification of novel transcription factor-like gene from human intestinal cells[J]. Biochem Biophys Res Commun, 2000, 276(2): 660-666. [5] Bruno T, Iezzi S, Fanciulli M. Che-1/AATF: a critical cofactor for both wild-Type- and mutant-p53 proteins[J]. Front Oncol, 2016, 6: 34. doi: 10.3389/fonc.2016.00034. [6] Di Padova M, Bruno T, De Nicola F, et al. Che-1 arrests human colon carcinoma cell proliferation by displacing HDAC1 from the p21WAF1/CIP1 promoter[J]. J Biol Chem, 2003, 278(38): 36496-36504. [7] Hopker K, Hagmann H, Khurshid S, et al. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis[J]. EMBO J, 2012, 31(20): 3961-3975. [8] Desantis A, Bruno T, Catena V, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy[J]. EMBO J, 2015, 34(9): 1214-1230. [9] Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 3(45 W1): W98-W102. doi: 10.1093/nar/gkx247. [10] Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based Human Protein Atlas[J]. Nat Biotechnol, 2010, 28(12): 1248-1250. [11] Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome[J]. Science, 2015, 347(6220): 1260419. doi: 10.1126/science.1260419. [12] Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome[J]. Science, 2017, 357(6352): pii: eaan2507. doi: 10.1126/science.aan2507. [13] Thul PJ, Akesson L, Wiking M, et al. A subcellular map of the human proteome[J]. Science, 2017, 356(6340): pii: eaal3321. doi: 10.1126/science.aal3321. [14] Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5): 401-404. [15] Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269): pl1. doi: 10.1126/scisignal.2004088. [16] Szasz AM, Lanczky A, Nagy A, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients[J]. Oncotarget, 2016, 7(31): 49322-49333. [17] Li B, Severson E, Pignon JC, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy[J]. Genome Biol, 2016, 17(1): 174. [18] Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108-e110. doi: 10.1158/0008-5472.CAN-17-0307. [19] Liu H, Yang C, Lu W, et al. Prognostic significance of glypican-3 expression in hepatocellular carcinoma: a meta-analysis[J]. Medicine(Baltimore), 2018, 97(4): e9702. doi: 10.1097/MD.0000000000009702. [20] Miki D, Ochi H, Hayes CN, et al. Hepatocellular carcinoma: towards personalized medicine[J]. Cancer Sci, 2012, 103(5): 846-850. [21] Berger AC, Korkut A, Kanchi RS, et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers[J]. Cancer Cell, 2018, 33(4): 690-705.e9. doi: 10.1016/j.ccell.2018.03.014. [22] Liu J, Lichtenberg T, Hoadley KA, et al. An integrated TCGA Pan-cancer clinical data resource to drive high-quality survival outcome analytics[J]. Cell, 2018, 173(2): 400-416. e11. doi: 10.1016/j.cell.2018.02.052. [23] Passananti C, Floridi A, Fanciulli M. Che-1/AATF, a multivalent adaptor connecting transcriptional regulation, checkpoint control, and apoptosis[J]. Biochem Cell Biol, 2007, 85(4): 477-483. [24] Passananti C, Fanciulli M. The anti-apoptotic factor Che-1/AATF links transcriptional regulation, cell cycle control, and DNA damage response[J]. Cell Div, 2007, 2: 21. doi: 10.1186/1747-1028-2-21. [25] Di Certo MG, Corbi N, Bruno T, et al. NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death[J]. J Cell Sci, 2007, 120(Pt 11): 1852-1858. [26] Fanciulli M, Bruno T, Di Padova M, et al. Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb[J]. FASEB J, 2000, 14(7): 904-912. [27] Bruno T, De Angelis R, De Nicola F, et al. Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb[J]. Cancer Cell, 2002, 2(5): 387-399. [28] Jackson JG,Lozano G. Che-ating death: CHE1/AATF protects from p53-mediated apoptosis[J]. EMBO J, 2012, 31(20): 3951-3953. |
[1] | 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96. |
[2] | 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112. |
[3] | 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49. |
[4] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[5] | 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122. |
[6] | 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58. |
[7] | 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58. |
[8] | 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95. |
[9] | 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147. |
[10] | 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9. |
[11] | 陈丽宇,肖娟,吕仙忠,段宝敏,洪凡真. 影响孕产妇下肢深静脉血栓预后的危险因素分析[J]. 山东大学学报 (医学版), 2021, 59(7): 38-42. |
[12] | 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49. |
[13] | 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84. |
[14] | 米琦,史爽,李娟,李培龙,杜鲁涛,王传新. 膀胱癌circRNAs介导的ceRNA网络及预后评估模型的构建[J]. 山东大学学报 (医学版), 2021, 59(6): 94-102. |
[15] | 谢同辉,陈志强,常建华,赵丹文,徐博文,智绪亭. 肝内胆管癌根治性切除术后生存因素分析及列线图的建立[J]. 山东大学学报 (医学版), 2021, 59(4): 93-99. |
|