山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (12): 19-25.doi: 10.6040/j.issn.1671-7554.0.2018.338
• • 上一篇
张坤1,2,延冰3,李芳1,2,肖东杰1,2,汪运山1,2,刘华1,2
ZHANG Kun1,2, YAN Bing3, LI Fang1,2, XIAO Dongjie1,2, WANG Yunshan1,2, LIU Hua1,2
摘要: 目的 研究脂肪源性干细胞(ADSCs)对内源性皮肤老化的抗衰老作用及机制。 方法 分离培养小鼠皮肤成纤维细胞(MSFCs)及人ADSCs。将MSFCs 分为对照组、模型组、ADSCs条件培养基组。D-半乳糖(D-gal)制备MSFCs衰老模型,ADSCs条件培养基培养。镜下及流式检测ROS、β-半乳糖苷酶活性的变化,RT-PCR 检测caspase3、p53、sirt1基因的表达情况,Western blotting检测Sirt1蛋白表达。 结果 模型组较对照组ROS水平上升(P<0.001)、β-半乳糖苷酶着色增深,而ADSCs条件培养基组较模型组ROS水平降低(P<0.001)、β-半乳糖苷酶着色变浅。RT-PCR检测结果显示模型组较对照组caspase3(P<0.001)、p53(P=0.001)表达升高,sirt1表达下降(P<0.001);而ADSCs条件培养基组较模型组caspase3(P<0.001)、p53(P=0.001)表达下降,sirt1表达升高(P<0.001)。 Western blotting结果显示模型组较对照组Sirt1表达下降(P<0.001),而ADSCs条件培养基组较模型组Sirt1表达升高(P=0.006)。 结论 ADSCs可通过Sirt1通路改善D-gal引起的内源性皮肤老化。
中图分类号:
[1] Ruetze M, Richter W. Adipose-derived stromal cells for osteoarticular repair: trophic function versus stem cell activity [J]. Expert Rev Mol Med, 2014, 16: e9. doi: 10.1017/erm.2014.9. [2] Chung MT, Zimmermann AS, Paik KJ, et al. Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine [J]. Stem Cells Transl Med, 2013, 2(10): 808-817. [3] 黄平,张坤,李芳,等.脐带和脂肪源性间充质干细胞生物学特性比较[J].山东大学学报(医学版),2018, 56(3): 72-78. HUANG Ping, ZHANG Kun, LI Fang, et al. Comparative study on biological characteristics of mesenchymal stem cellsfrom human umbilical cord and adipose[J]. Journal of Shandong University(Health Sciences), 2018, 56(3): 72-78. [4] Naylor EC, Watson RE, Sherratt MJ. Molecular aspects of skin ageing[J]. Maturitas, 2011, 69(3): 249-256. [5] Bonta M, Daina L, Mutiu G. The process of ageing reflected by histological changes in the skin[J]. Rom J Morphol Embryol, 2013, 54(3): 797-804. [6] Quan C, Cho MK, Perry D, et al. Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging[J]. J Biomed Sci, 2015, 22: 62. doi: 10.1186/s12929-015-0167-6. [7] Gaur M, Dobke M, Lunyak VV. Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging[J]. Int J Mol Sci, 2017, 18(1). pii: E208. doi: 10.3390/ijms18010208. [8] Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: a review [J]. World J Stem Cells, 2017, 9(8): 107-117. [9] Couto PS, Bersenev A, Verter F. The first decade of advanced cell therapy clinical trials using perinatal cells(2005-2015)[J]. Regen Med, 2017, 12(8): 953-968. [10] Paschos NK, Sennett ML. Update on mesenchymal stem cell therapies for cartilage disorders[J]. World J Orthop, 2017, 8(12): 853-860. [11] Sun Z, Luo B, Liu ZH, et al. Adipose-derived Sstromal cells protect intervertebral disc cells in compression: implications for stem cell regenerative disc therapy [J]. Int J Biol Sci, 2015, 11(2): 133-143. [12] Condé-Green A, Marano AA, Lee ES, et al. Fat grafting and adipose-derived regenerative cells in burn wound healing and scarring: a systematic review of the literature [J]. Plast Reconstr Surg, 2016, 137(1): 302-312. [13] Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration[J]. Expert Opin Biol Ther, 2015, 15(9):1285-1292. [14] Lee JH, Fisher DE. Melanocyte stem cells as potential therapeutics in skin disorders[J]. Expert Opin Biol Ther, 2014, 14(11): 1569-1579. [15] Pu CM, Liu CW, Liang CJ, et al. Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via IL-6 expression [J]. J Invest Dermatol, 2017, 137(6): 1353-1362. [16] Iser IC, Ceschini SM, Onzi GR, et al. Conditioned medium from adipose-derived stem cells(ADSCs)promotes epithelial-to-mesenchymal-like transition(EMT-Like)in glioma cells in vitro [J]. Mol Neurobiol, 2016, 53(10): 7184-7199. [17] Fukuoka H, Suga H. Hair regeneration treatment using adipose-derived stem cell conditioned medium: follow-up with trichograms [J]. Eplasty, 2015, 15: e10. [18] Ramdasi S, Tiwari SK. Human mesenchymal stem cell-derived conditioned media for hair regeneration applications [J].J Stem Cells, 2016, 11(4): 201-211. [19] Maynard S, Fang EF, Scheibye-Knudsen M, et al. DNA damage, DNA repair, aging, and neurodegeneration [J]. Cold Spring Harb Perspect Med, 2015, 5(10). pii:a025130. doi: 10.1101/cshperspect.a025130. [20] H(¨overo)hn A, Weber D, Jung T, et al. Happily(n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence [J]. Redox Biol, 2017, 11: 482-501. doi: 10.1016/j.redox.2016.12.001. [21] Edrey YH, Salmon AB. Salmon. Revisiting an age-old question regarding oxidative stress [J]. Free Radic Biol Med, 2014, 71: 368-378. doi: 10.1016/j.freeradbiomed.2014.03.038. [22] 林映雪,庄朋伟,张金保,等. D-半乳糖剂量及小鼠性别对衰老模型的影响[J].天津中医药大学学报, 2013, 32(3): 144-147. LIN Yingxue, ZHUANG Pengwei, ZHANG Jinbao, et al. Impact of D-galactoses dose and gender of mice on aging model[J]. Journal of Tianjin University of Traditional Chinese Medicine, 2013, 32(3): 144-147. [23] Li J, Cai D, Yao X, et al. Protective effect of ginsenoside Rg1 on ehmatopoietic stem/progenitor cells through attenuating oxidative stress and the Wnt/β-catenin signaling pathway in a mouse model of d-galactose-induced aging[J]. Int J Mol Sci, 2016, 17(6). pii:E849. doi: 10.3390/ijms17060849. [24] Mortuza R, Chen S, Feng B, et al. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway [J]. PLoS One, 2013, 8(1): e54514. doi: 10.1371/journal.pone.0054514. [25] Salminen A, Kaarniranta K, Kauppinen A. Crosstalk between oxi-dative stress and SIRT1: impact on the aging process [J]. Int JMol Sci, 2013, 14(2): 3834-3859. |
[1] | 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23. |
|