Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (8): 86-93.doi: 10.6040/j.issn.1671-7554.0.2025.0117
• Clinical Research • Previous Articles
LI Xiaoqi1, LIU Peili1, CHENG Hong2, ZHAO Yanyan1
CLC Number:
| [1] Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. [2] Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. [3] Kong G, Lin K, Hu Y. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU[J]. BMC Med Inform Decis Mak, 2020, 20: 251. doi:10.1186/s12911-020-01271-2 [4] Gao J, Lu Y, Ashrafi N, et al. Prediction of sepsis mortality in ICU patients using machine learning methods[J]. BMC Med Inform Decis Mak, 2024, 24: 228. doi:10.1186/s12911-024-02630-z [5] Khojandi A, Tansakul V, Li X, et al. Prediction of sepsis and in-hospital mortality using electronic health records[J]. Methods Inf Med, 2018, 57(4): 185-193. [6] Bao C, Deng F, Zhao S. Machine-learning models for prediction of sepsis patients mortality[J]. Med Intensiva(Engl Ed), 2023, 47(6): 315-325. [7] Zhang Y, Xu W, Yang P, et al. Machine learning for the prediction of sepsis-related death: a systematic review and Meta-analysis[J]. BMC Med Inform Decis Mak, 2023, 23(1): 283. doi:10.1186/s12911-023-02383-1 [8] 詹贤春, 程恒亮, 李维华. 基于注意力的融合模型预测脓毒症患者死亡率[J]. 云南大学学报(自然科学版), 2024, 46(5): 829-837. ZHAN Xianchun, CHENG Hengliang, LI Weihua. Attention-based fusion model to predict mortality of sepsis patients[J]. Journal of Yunnan University: Natural Sciences Edition, 2024, 46(5): 829-837. [9] Hou N, Li M, He L, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using Xgboost[J]. J Transl Med, 2020, 18(1): 462. doi:10.1186/s12967-020-02620-5 [10] Nikravangolsefid N, Reddy S, Truong HH, et al. Machine learning for predicting mortality in adult critically ill patients with sepsis: a systematic review[J]. J Crit Care, 2024, 84: 154889. doi:10.1016/j.jcrc.2024.154889 [11] Sarraf E, Sadr AV, Abedi V, et al. Enhancing sepsis prognosis: integrating social determinants and demographic variables into a comprehensive model for critically ill patients[J]. J Crit Care, 2024, 83: 154857. doi:10.1016/j.jcrc.2024.154857 [12] Black LP, Hopson C, Puskarich MA, et al. Racial disparities in septic shock mortality: a retrospective cohort study[J]. Lancet Reg Health Am, 2023, 29. doi:10.1016/j.lana.2023.100646 [13] Galiatsatos P, Sun J, Welsh J, et al. Health disparities and sepsis: a systematic review and Meta-analysis on the influence of race on sepsis-related mortality[J]. J Racial Ethn Health Disparities, 2019, 6(5): 900-908. [14] Erickson SE, Vasilevskis EE, Kuzniewicz MW, et al. The effect of race and ethnicity on outcomes among patients in the intensive care unit: a comprehensive study involving socioeconomic status and resuscitation preferences[J]. Crit Care Med, 2011, 39(3): 429-435. [15] Jones JM, Fingar KR, Miller MA, et al. Racial disparities in sepsis-related in-hospital mortality: using a broad case capture method and multivariate controls for clinical and hospital variables, 2004-2013[J]. Crit Care Med, 2017, 45(12): e1209-e1217. [16] Chaudhary NS, Donnelly JP, Wang HE. Racial differences in sepsis mortality at U.S. academic medical center-affiliated hospitals[J]. Crit Care Med, 2018, 46(6): 878-883. [17] Sandoval E, Chang DW. Association between race and case fatality rate in hospitalizations for sepsis[J]. J Racial Ethn Health Disparities, 2016, 3(4): 625-634. [18] Zhang Y, Liu C, Liu M, et al. Attention is all you need: utilizing attention in AI-enabled drug discovery[J]. Brief Bioinform, 2024, 25(1): bbad467. doi:10.1093/bib/bbad467 [19] Johnson A, Bulgarelli L, Pollard T, et al. MIMIC-IV(version 2.2)[EB/OL].(2023-01-06)[2025-01-26]. https://doi.org/10.13026/6mm1-ek67 [20] Kalimouttou A, Lerner I, Cheurfa C, et al. Machine-learning-derived sepsis bundle of care[J]. Intens Care Med, 2023, 49(1): 26-36. [21] Sarkar R, Martin C, Mattie H, et al. Performance of intensive care unit severity scoring systems across diffe-rent ethnicities in the USA: a retrospective observational study[J]. Lancet Digit Health, 2021, 3(4): 241-249. [22] Angus DC, Van Der Poll T. Severe sepsis and septic shock[J]. N Engl J Med, 2013, 369(9): 840-851. [23] Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study[J]. Crit Care Med, 2006, 34(2): 344-353. [24] Azkárate I, Choperena G, Salas E, et al. Epidemiology and prognostic factors in severe sepsis/septic shock. Evolution over six years[J]. Med Intensiva, 2016, 40(1): 18-25. [25] van Vught LA, Klouwenberg PMCK, Spitoni C, et al. Incidence, risk factors, and attributable mortality of secondary infections in the Intensive Care Unit after admission for sepsis[J]. JAMA, 2016, 315(14): 1469-1479. [26] Vincent JL, Moreno R, Takala J, et al. The SOFA(Sepsis-related Organ Failure Assessment)score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine[J]. Intensive Care Med, 1996, 22(7): 707-710. [27] Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score(SAPS II)based on a Euro-pean/North American multicenter study[J]. JAMA, 1993, 270(24): 2957-2963. [28] Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): 1063-1143. [29] Taylor SP, Karvetski CH, Templin MA, et al. Hospital differences drive antibiotic delays for black patients compared with white patients with suspected septic shock[J]. Crit Care Med, 2018, 46(2): 126-131. [30] Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychol Rev, 1958, 65(6): 386-408. [31] Mao A, Mohri M, Zhong Y. Cross-entropy loss functions: theoretical analysis and applications. International conference on Machine learning[EB/OL].(2023-06-20)[2025-01-26]. https://arxiv.org/abs/2304.07288 [32] Kingma DP, Ba J. Adam: a method for stochastic optimization[EB/OL].(2017-01-30)[2025-01-26]. https://doi.org/10.48550/arXiv.1412.6980 [33] Koköfer A, Mamandipoor B, Flamm M, et al. The impact of ethnic background on ICU care and outcome in sepsis and septic shock-a retrospective multicenter analysis on 17,949 patients[J]. BMC Infect Dis, 2023, 23(1): 194. doi:10.1186/s12879-023-08170-7 [34] Prest J, Sathananthan M, Jeganathan N. Current trends in sepsis-related mortality in the United States[J]. Crit Care Med, 2021, 49(8): 1276-1284. [35] McGowan SK, Sarigiannis KA, Fox SC, et al. Racial disparities in ICU outcomes: a systematic review[J]. Crit Care Med, 2022, 50(1): 1-20. [36] Limaye NP, Matias WR, Rozansky H, et al. Limited English proficiency and sepsis mortality by race and ethnicity[J]. JAMA Netw Open, 2024, 7(1): e2350373. doi:10.1001/jamanetworkopen.2023.50373 [37] Zimmerman JE, Kramer AA, McNair DS, et al. Acute Physiology and Chronic Health Evaluation(APACHE)IV: hospital mortality assessment for todays critically ill patients[J]. Crit Care Med, 2006, 34(5): 1297-1310. |
| [1] | ZHANG Runze, XUE Fuzhong, YANG Fan. Cancer subtype clustering via multimodal decoupled contrastive learning [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 51-60. |
| [2] | WANG Mengxing, XUE Fuzhong, YANG Fan. Blood glucose concentration prediction method for type 1 diabetes mellitus based on multi-modal cross-attention mechanism fusion [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 41-50. |
| [3] | LI Qian, YANG Fan, XUE Fuzhong. Multi-cancer risk prediction model based on multi-modal data fusion [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 79-85. |
| [4] | GE Xue, ZHAO Hongyan. Effect of herpesvirus infection on clinical prognosis and respiratory microbiota in patients with severe pneumonia [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 27-37. |
| [5] | WANG Liyun, GAO Tianqin, LIU Yujia, CHEN Qing, CHEN Liu, SHA Kaihui. Development and validation of a postpartum stress urinary incontinence risk prediction model based on machine learning [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 55-66. |
| [6] | DU Xue, LI Chunxia, LIU Yunxia, ZHANG Tao. Dynamic prediction model for the colorectal cancer patients prognosis based on MFPC-Cox [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 101-110. |
| [7] | LI Jing, HAO Panpan. Association between the heart rate variation and the prognosis in patients with acute heart failure at hospital admission and discharge [J]. Journal of Shandong University (Health Sciences), 2025, 63(4): 75-82. |
| [8] | LI Yong, CUI Shujun, YANG Fei, ZHANG Fan, YIN Xiaoxia. Enhanced MRI-based subregional radiomics model can predict pathological complete response after neoadjuvant chemotherapy in breast cancer patients [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 81-89. |
| [9] | SUN Lina, BAI Hongyan, NIU Zongge, ZHANG Fushuai, QU Yiqing. Construction and evaluation of an online clinical risk model for predicting in-hospital mortality in patients with ARDS based on SII [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 10-20. |
| [10] | SUN Xiaodan, YANG Chuang. Clinical efficacy of polymyxin B in treatment of patients infected with carbapenem resistant Gram-negative bacteria in intensive care unit [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 72-77. |
| [11] | WANG Yumiao, CUI Xiaopei, ZHANG Hongyu. Short-term efficacy and safety of anticoagulant therapy in elderly patients with corona virus disease 2019 [J]. Journal of Shandong University (Health Sciences), 2024, 62(12): 21-31. |
| [12] | CAI Qiang, SHAN Tichao, WU Han. Efficacy of terminal patient condition assessment form in predicting survival time of terminal patients [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 79-83. |
| [13] | ZHANG Meng, MA Wei. Trend and disease burden of human immunodeficiency virus/acquired immunodeficiency syndrome in China from 1990 to 2019 [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 84-89. |
| [14] | ZHONG Lu, XUE Fuzhong. A Lung cancer risk prediction model based on Bayesian network uncertainty inference [J]. Journal of Shandong University (Health Sciences), 2023, 61(4): 86-94. |
| [15] | Xiao LI,Zhiyuan SUN,Longjiang ZHANG. Research advances of artificial intelligence-based medical imaging in the screening, diagnosis and prediction of pneumonia [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 13-20. |
|
||