JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES) ›› 2017, Vol. 55 ›› Issue (8): 24-29.doi: 10.6040/j.issn.1671-7554.0.2017.059

Previous Articles     Next Articles

IL-17F promotes the proliferation, mineralization and expressions of Runx2 and Osterix in rat osteoblasts

JI Yuanyuan1, BAO Jingbo2, ZHAO Xu1, CAO Luning1, CUI Min1, ZHANG Na1, YU Lingzhi1   

  1. 1. Department of Pain Management, Jinan Central Hospital Affliliatedto Shandong University, Jinan 250013, Shandong, China;
    2. Hospital of Yantai Vocational College, Yantai 264025, Shandong, China
  • Received:2017-01-16 Online:2017-08-10 Published:2017-08-10

Abstract: Objective To investigate the effects of interleukin-17F(IL-17F)on the proliferation, mineralization and expressions of Runx2 and Osterix in rat osteoblasts. Methods Primarycalvarial osteoblasts were isolated from neonatal Wistarrats<24 h, cultured with low glucose DMEM medium containing 10% fetal bovine serum, and the medium was replaced every 3 days. The cells were passaged when the cell fusion area reached about 80%. The fourth generation osteoblasts were divided into 6 groups according to the concentration of IL-17F in the culture medium: 0 ng/mL group(control group), 1 ng/mL group, 10 ng/mL group, 20 ng/mL group, 50 ng/mL group, and 100 ng/mL group. After 3 days, the proliferation rate of osteoblasts was detected with CCK-8 kit. The mRNA transcription and protein expressions of Runx2 and Osterix were detected with real time fluorescent quantitative PCR and Western blotting, respectively. After 10days, the mineralized nodules were stained with Alizarin red in the control group and 100 ng/mL group. Results The cell proliferation rate was higher in 20 ng/mL, 50 ng/mL and 100 ng/mL groups than in the control group(P<0.05), in a concentration-dependent manner. The levels of mRNA transcription and protein expressions of Runx2 and Osterix in 50 ng/mL group and 100 ng/mL group were higher than those in the control group(P<0.05). The positive 山 东 大 学 学 报 (医 学 版)55卷8期 -姬原原,等.白介素17F促进大鼠成骨细胞增殖、矿化和Runx2、Osterix的表达 \=-staining area of mineralized nodules in 100 ng/mL group was larger than that in the control group. Conclusion Interleukin-17F can promote the osteogenesis of rat osteoblasts in vitro.

Key words: Runx2, Osterix, Mineralization, Interleukin-17F, Osteoblast

CLC Number: 

  • R589
[1] 杨泽贤, 杨吉恒.骨质疏松性骨折的研究进展[J].现代中西医结合杂志, 2011, 20(19):2461-2463.
[2] Kolls JK, Linden A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21(4):467-476.
[3] 李君, 宋军健, 马川, 等. 白介素17的进化及结构分析[J]. 第二军医大学学报, 2013, 34(1):17-23. LI Jun, SONG Junjian, MA Chuan, et al. Evolution and structural analysis of interleukin-17[J]. Academic Journal of Second Military Medical University, 2013, 34(1):17-23.
[4] Wang YH, Liu YJ. The IL-17 cytokine family and their role in allergic inflammation[J].Curr Opin Immunol, 2008, 20(6):697-702.
[5] Riedel JH, Paust HJ, Krohn S, et al. IL-17F promotes tissue injury in autoimmune kidney diseases[J]. J Am Soc Nephrol, 2016, 27(12):3666-3677.
[6] Carvalho CN, Do CR, Duarte AL, et al. IL-17A and IL-17F polymorphisms in rheumatoid arthritis and Sjogrens syndrome[J]. Clin Oral Investig, 2016, 20(3):495-502.
[7] van Baarsen LG, Lebre MC, van der Coelen D, et al. Heterogeneous expression pattern of interleukin 17A(IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy?[J]. Arthritis Res Ther, 2014, 16(4):426.
[8] Luo Z, Wang H, Chen J, et al. Overexpression and potential regulatory role of IL-17F in pathogenesis of chronic periodontitis[J]. Inflammation, 2015, 38(3):978-986.
[9] Starnes T, Robertson MJ, Sledge G, et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production[J]. J Immunol, 2001, 167(8):4137-4140.
[10] McAllister F, Henry A, Kreindler JL, et al. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis[J]. J Immunol, 2005, 175(1):404-412.
[11] Cheung PF, Wong CK, Lam CW. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation[J]. J Immunol, 2008, 180(8):5625-5635.
[12] Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs[J]. Immunity, 2008, 29(1):44-56.
[13] Ishigame H, Kakuta S, Nagai T, et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses[J]. Immunity, 2009, 30(1):108-119.
[14] Komori T. Regulation of osteoblast differentiation by transcription factors[J]. J Cell Biochem, 2006, 99(5):1233-1239.
[15] Nakashima K, de Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation[J]. Trends Genet, 2003, 19(8):458-466.
[16] Cui M, Yu LZ, Zhang N, et al. Zoledronicacidimproves bone quality in the streptozotocin-induced diabetes rat through affecting the expression of the osteoblast-regulating transcription factors[J]. Exp Clin Endocrinol Diabetes, 2016.
[17] 张娜, 丛静, 于灵芝, 等. 链脲佐菌素诱导1型糖尿病大鼠股骨生物力学变化及唑来膦酸的影响[J]. 中华关节外科杂志(电子版), 2015, 9(4):495-499. ZHANG Na, CONG Jing, YULingzhi, et al. Biomechanical changes of femur in streptozotocin induced type 1 diabetic rats and influences of zoledronic acid[J]. Chin J Joint Surg(Electronic Edition), 2015, 9(4):495-499.
[18] Zhang N, Gui Y, Qiu X, et al. DHEA prevents bone loss by suppressing the expansion of CD4(+)T cells and TNFa production in the OVX-mouse model for postmenopausal osteoporosis[J]. Biosci Trends, 2016, 10(4):277-287.
[19] Happel KI, Dubin PJ, Zheng M, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiellapneumoniae[J]. J Exp Med, 2005, 202(6):761-769.
[20] Wu Q, Martin RJ, Rino JG, et al. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection[J]. Microbes Infect, 2007, 9(1):78-86.
[21] Huang H, Kim HJ, Chang EJ, et al. IL-17 stimulates the proliferation and differentiation of human mesenchymalstemcells: implications for bone remodeling[J]. Cell Death Differ, 2009, 16(10):1332-1343.
[22] Uluckan O, Jimenez M, Karbach S, et al. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts[J]. SciTransl Med, 2016, 8(330):330-337.
[23] Kim YG, Park JW, Lee JM, et al. IL-17 inhibits osteoblast differentiation and bone regeneration in rat[J]. Arch Oral Biol, 2014, 59(9):897-905.
[24] Tyagi AM, Srivastava K, Mansoori MN, et al. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis[J]. PLoS One, 2012, 7(9):44552.
[25] Croes M, Oner FC, van Neerven D, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation[J]. Bone, 2016, 84:262-270.
[26] Nam D, Mau E, Wang Y, et al. T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair[J]. PLoS One, 2012, 7(6):40044.
[27] Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970, 3(4):393-403.
[28] Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell, 2002, 108(1):17-29.
[1] FENG Xiaoyu, ZHANG Hongmei, CHE Xuanqiang, KANG Donghong. Therapeutic effects of human osteoblast-stimulating factor on osteoporosis of ovariectomized rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(7): 8-12.
[2] ZHAO Xu, CUI Min, YU Lingzhi, ZHANG Na, CAO Luning. Changes of Runx2 and Osterix expression in type 1 diabetic rats and the intervention effect of zoledronic acid [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(3): 56-61.
[3] . Effects of TNFα on cultured spinal ligament cells in vitro [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(9): 93-97.
[4] YANG Yun,ZHANG Li-ping,HU Jian-li,ZHANG Zuo-lun. Simvastatin promotes the proliferation and mineralization of osteoblasts cultured in vitro [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(9): 895-898.
[5] SUN Nian-zheng,SHEN Bai-jun. [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2006, 44(9): 954-959.
[6] WANG Zhi-yong,CHEN Hai-zeng,YU Shang-ji. [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2006, 44(11): 1090-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!