Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (8): 61-68.doi: 10.6040/j.issn.1671-7554.0.2025.0152
• Clinical Research • Previous Articles
LIU Weilong1, WANG Ding2, ZHAO Chao3, WANG Ning2, ZHANG Xu1, SU Ping2, SONG Shudian2, ZHANG Na2, CHI Weiwei2
CLC Number:
| [1] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[C] //Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Baltimore, Maryland: Association for Computational Linguistics, 2014: 655-665. [2] Devlin J, Chang MW, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C] // Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, 2019: 4171-4186. [3] Scarselli F, Gori M, Tsoi AC, et al. The graph neural network model[J]. IEEE Trans Neural Netw, 2008, 20(1): 61-80. [4] Chang D, Chen M, Liu C, et al. DiaKG: an annotated diabetes dataset for medical knowledge graph construction[C] //Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction. Singapore: Springer, 2021: 308-314. [5] OpenAI. ChatGPT(v4)[EB/OL].(2024-05)[2025-02-01]. https://openai.com/chatgpt [6] Strubell E, Verga P, Belanger D, et al. Fast and accurate entity recognition with iterated dilated convolutions[EB/OL].(2017-07-22)[2025-02-01]. https://arxiv.org/abs/1702.02098 [7] Che W, Li Z, Liu T. LTP: a chinese language technology platform[C] // Coling 2010: demonstrations. Beijing, China: Coling 2010 Organizing Committee, 2010: 13-16. [8] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[EB/OL].(2017-12-06)[2025-02-01]. https://arxiv.org/abs/1706.03762v5 [9] Gopalan S, Devi SL. Cause and effect extraction from biomedical corpus[J]. CyS, 2018, 21(4). doi: 10.13053/cys-21-4-2854 [10] Guo Y, Wang ZH, Shao ZQ. Improving causality induction with category learning[J]. Sci World J, 2014, 2014: 650147. doi:10.1155/2014/650147 [11] Kabir MA, Almulhim A, Luo X, et al. Informative causality extraction from medical literature via dependency-tree-based patterns[J]. J Healthc Inform Res, 2022, 6(3): 295-316. [12] Radinsky K, Davidovich S, Markovitch S. Learning causality for news events prediction[C] //Annual Conference on World Wide Web. Lyon, France: CS Department Technion-lsrael Institute of Technology Haifa, Israel. 2012: 909-918. [13] Spirtes P, Glymour C. An algorithm for fast recovery of sparse causal graphs[J]. Soc Sci Comput Rev, 1991, 9(1): 62-72. [14] Peters J, Mooij JM, Janzing D, et al. Causal discovery with continuous additive noise models[J]. J Mach Learn Res, 2014, 15(58): 2009-2053. [15] Zhao BX, Wang SL, Chi LH, et al. HANM: hierarchical additive noise model for many-to-one causality discovery[J]. IEEE Trans Knowl Data Eng, 2023, 35(12): 12708-12720. [16] Gu JX, Wang ZH, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognit, 2018, 77: 354-377. doi:10.1016/j.patcog.2017.10.013 [17] Socher R, Lin CC, Manning C, et al. Parsing natural scenes and natural language with recursive neural networks[EB/OL].(2024-04-09)[2025-02-01]. https://nlp.stanford.edu/pubs/SocherLinNgManning_ICML2011.pdf [18] Luong MT, Socher R, Manning CD. Better word representations with recursive neural networks for morphology[EB/OL].(2024-04-09)[2025-02-01]. https://aclanthology.org/W13-3512.pdf [19] He DC, Zhang HJ, Hao WN, et al. Distant supervised relation extraction via long short term memory networks with sentence embedding[J]. Intell Data Anal, 21(5): 1213-1231. [20] Zheng SC, Xu JM, Zhou P, et al. A neural network framework for relation extraction: learning entity semantic and relation pattern[J]. Knowl Based Syst, 2016, 114: 12-23. doi:10.1016/j.knosys.2016.09.019 [21] Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains[EB/OL].(2024-08-06)[2025-02-01]. https://ieeexplore.ieee.org/document/1555942 [22] Li Y, Tarlow D, Brockschmidt M, et al. Gated Graph Sequence Neural Networks[EB/OL].(2024-08-06)[2025-02-01]. https://www.semanticscholar.org/paper/492f57ee9ceb61fb5a47ad7aebfec1121887a175 [23] Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs[EB/OL].(2014-05-21)[2025-02-01]. http://www.xueshufan.com/publication/1662382123 [24] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering[C] //Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2016: 3844-3852. [25] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks[EB/OL].(2017-02-22)[2025-06-16]. http://arxiv.org/abs/1609.02907 [26] Yao L, Mao C, Luo Y. Graph convolutional networks for text classification[C] //Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. Honolulu, Hawaii, USA: AAAI Press, 2019: 7370-7377. [27] Veyseh APB, Nguyen TN, Nguyen TH. Graph transformer networks with syntactic and semantic structures for event argument extraction[EB/OL] //(2020-10-26)[2025-02-01]. https://arxiv.org/abs/2010.13391 [28] Christopoulou F, Miwa M, Ananiadou S. Connecting the dots: document-level neural relation extraction with edge-oriented graphs[C] // Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics, 2019: 4925-4936. [29] Phu MT, Nguyen TH. Graph convolutional networks for event causality identification with rich document-level structures[C]. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Bangkok, Thailand: Association for Computational Linguistics, 2021: 3480-3490. |
| No related articles found! |
|
||