Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (6): 28-33.doi: 10.6040/j.issn.1671-7554.0.2019.1442

Previous Articles    

Gaussian process model for risk assessment of readmission for patients with chronic heart failure within one year

ZHANG Chuanbei1*, LI Fang2*, ZHAI Chunxiao3, YU Yongming4, SHU Minglei5, WANG Yidan3, XU Liangdong6, HAO Enkui3   

  1. 1. Clinical Medical College of Weifang Medical College, Weifang 261000, Shandong, China;
    2. Department of Health, Jinan Central Hospital, Jinan 250012, Shandong, China;
    3. Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Jinan 250012, Shandong, China;
    4. School of Control Science and Materials, Shandong University, Jinan 250012, Shandong, China;
    5. National Supercomputer Center in Jinan, Jinan 250012, Shandong, China;
    6. Emergency Department, Dezhou Peoples Hospital, Dezhou 253000, Shandong, China
  • Published:2022-09-27

Abstract: Objective To explore the predictive value of a 1-year readmission risk assessment for patients with chronic left ventricular systolic function(LVSD)by using a Gaussian process model(GPM)and echocardiographic parameters. Methods A total of 290 patients with chronic LVSD were collected, and re-hospitalization within one year was the end point of the study. All patients underwent routine echocardiography to collect data including mitral regurgitation, tricuspid regurgitation, pleural effusion, pericardial effusion, pulmonary artery systolic pressure, left ventricular diameter and left ventricular ejection fraction. The 290 patients were randomly divided into 70% training group(modeling group)and 30% testing group(prediction group). The information interaction analysis on the training dataset was carried out with machine learning algorithms. The importance of each parameter was evaluated, and echocardiographic parameters were merged to establish GPM. Subsequently, the readmission risk of the testing dataset was analyzed using GPM. In addition, the risk of all patients was predicted with the echocardiography parameter scoring system. Finally the two methods were compared with receiver operating characteristic(ROC)curve. Results GPM information interaction analysis showed the weights of echocardiographic parameters were: mitral regurgitation 23.64%, tricuspid regurgitation 22.09%, pleural effusion 16.18%, pericardial effusion 14.36%, pulmonary artery contraction pressure 9.04%, left ventricular diameter 8.86%, and left ventricular ejection fraction 5.83%. Based on GPM and echocardiography parameter scoring system, the area under the ROC curve(AUC)was 83.10%(95% CI: 0.797-0.864), 70.60%(95% CI: 0.647-0.765), respectively. Conclusion GPM based on echocardiographic parameters can well predict the readmission risk of LVSD patients within one year, and it is superior to echocardiography parameter scoring system.

Key words: Left ventricular systolic dysfunction, Gaussian Process Model, Echocardiography, One-year readmission rate

CLC Number: 

  • R541.6
[1] Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population [J]. JAMA, 2004, 292(3): 344-350.
[2] Krittanawong C, Zhang HJ, Wang Z, et al. Artificial intelligence in precision cardiovascular medicine [J]. J Am Coll Cardiol, 2017, 69(21): 2657-2664.
[3] Statnikov A, Wang L. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification [J]. BMC Bioinformatics, 2008, 9: 319. doi: 10.1186/1471-2105-9-319.
[4] Panahiazar M, Taslimitehrani V, Pereira N. Using EHRs and machine learning for heart failure survival analysis [J]. Stud Health Technol Inform, 2015, 216: 40-44. doi: 10.3233/978-1-61499-564-7-40.
[5] Mortazavi BJ, Downing NS, Bucholz EM, et al. Analysis of machine learning techniques for heart failure readmissions [J]. Circ Cardiovasc Qual Outcomes, 2016, 9(6): 629-640.
[6] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129. HE Zhikun, LIU Guangbin, ZHAO Xijing, et al. Overview of gaussian process regression methods [J]. Control and Decision, 2013, 28(8): 1121-1129.
[7] 翟春晓, 王晓军, 余永明, 等. 心脏超声参数积分系统对慢性左心室收缩功能减低心力衰竭患者1年再入院的风险评估[J]. 中国循环杂志, 2017, 32(12): 1194-1198. ZHAI Chunxiao, WANG Xiaojun, YU Yongming, et al. Risk assessment of echocardiography parameter scoring system for 1 year re-admission in patients with left ventricular systolic dysfunction[J]. China Circulation Journal, 2017, 32(12): 1194-1198.
[8] Seeger M. Gaussian processes for machine learning[J]. Int J Neural Syst, 2004, 14(2): 69-106.
[9] 何显菁. 心力衰竭发病机制、诊断及治疗的研究进展[J]. 实用心脑肺血管病杂志, 2018, 26(7): 1-8. HE Xianjing. Research progress on pathogenesis, diagnosis and treatment of heart failure[J]. Journal of Practical Heart, Brain, Pulmonary and Vascular Diseases, 2018, 26(7): 1-8.
[10] Guidi G, Pollonini L, Dacso CC, et al. A multi-layer monitoring system for clinical management of Congestive Heart Failure[J]. BMC Med Inform Decis Mak, 2015, 15(3): 5-5.
[11] 王晓军, 丛晓, 申晓倩, 等. 采用超声心动图参数分析和预测慢性左心室射血分数降低心力衰竭患者1年内再入院风险[J]. 中国循环杂志, 2016, 31(2): 142-145. WANG Xiaojun, CONG Xiao, SHEN Xiaoqian, et al. Analysis and prediction for 1 year re-admission risk in patients of chronic heart failure with reduced left ventricular ejection fraction by echocardiography[J]. China Circulation Magazine, 2016, 31(2): 142-145.
[12] Giamouzis G, Kalogeropoulos A, Georgiopoulou V, et al. Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions[J]. J Card Fail, 2011, 17(1): 54-75.
[13] 赵玉清, 袁桂莉, 张进顺, 等. 和肽素联合N末端B型利钠肽原评估慢性心力衰竭患者预后的价值[J]. 中国循环杂志, 2014, 29(4): 275-278. ZHAO Yuqing, YUAN Guili, ZHANG Jinshun, et al. Prognostic value assessment of copeptin and NT-proBNP in patients with chronic heart failure[J]. China Circulation Magazine, 2014, 29(4): 275-278.
[14] Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure [J]. Circulation, 2006, 113(11): 1424-1433.
[15] Giamouzis G, Kalogeropoulos AP, Georgiopoulou VV, et al. Incremental value of renal function in risk prediction with the Seattle Heart Failure Model [J]. Am Heart J, 2009, 157(2): 299-305.
[16] AbouEzzeddine OF, French B, Mirzoyev SA, et al. From statistical significance to clinical relevance: A simple algorithm to integrate brain natriuretic peptide and the Seattle Heart Failure Model for risk stratification in heart failure[J]. J Heart Lung Transplant, 2016, 35(6): 714-721.
[17] Pocock SJ, Ariti CA, McMurray JJ, et al. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies[J]. Eur Heart J, 2013, 34(19): 1404-1413.
[18] Senni M, Parrella P, De Maria R, et al. Predicting heart failure outcome from cardiac and comorbid conditions: the 3C-HF score[J]. Int J Cardiol, 2013, 163(2): 206-211.
[19] Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine learning, and clinical medicine [J]. N Engl J Med, 2016, 375(13): 1216-1219.
[20] Shameer K, Johnson KW, Yahi A, et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using mount Sinai heart failure cohort [J]. Pac Symp Biocomput, 2017, 22: 276-287. doi: 10.1142/9789813207813_0027.
[21] 楼浩锋, 张端. 高斯过程下的CMA-ES在医学图像配准中的应用[J]. 计算机科学, 2018, 45(S2): 244-247. LOU Haofeng, ZHANG Duan. Gaussian process assisted CMA-ES application in medical image registration [J]. Computer Science, 2018, 45(S2): 244-247.
[22] Weng SF, Reps J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data?[J]. PLoS One, 2017, 12(4): e0174944. doi: 10.1371/journal.pone.0174944.
[23] Panahiazar M, Taslimitehrani V, Pereira N, et al. Using EHRs and machine learning for heart failure survival analysis [J]. Stud Health Technol Inform, 2015, 216: 40-44. doi: 10.3233/978-1-61499-564-7-40.
[24] Kennedy EH, Wiitala WL, Hayward RA, et al. Improved cardiovascular risk prediction using nonparametric regression and electronic health record data [J]. Medical care, 2013, 51(3): 251-258.
[25] Ouwerkerk W, Voors AA. Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure [J]. JACC Heart Fail, 2014, 2(5): 429-436.
[26] Levy WC, Anand IS. Heart failure risk prediction models: what have we learned [J]. JACC Heart Fail, 2014, 2(5): 437-439.
[1] ZHANG Shuying, WU Xiaofeng, GUO Limin, QIAO Wen, PENG Jieqiong, LI Daqing. Evaluation of two doxorubicin-induced heart failure models and changes of cardiac function [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 1-7.
[2] XUE Ming-hua1, ZHANG Qin2, HOU Dai-lun1, XU Qing-guo2, SUI Shu-jian3. Evaluation of right ventricular function in patients with pulmonary  hypertension using tissue Doppler imaging [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(4): 37-41.
[3] FU Kai-li1, ZHANG Xue-yi2, ZHU Meng3, WANG Zhi-hao1, WANG Hua1, ZHONG Ming1, ZHANG Yun1, ZHANG Wei1. Evaluation of stroke risks in patients with atrial fibrillation due to different pathogenesis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(06): 61-63.
[4] KAN Li-li1,2, AN Feng-shuang2. Evaluation of E/E′ on left ventricular diastolic function affected by  drug-treatment in the patients with hypertrophic cardiomyopathy [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(7): 105-108.
[5] MA Li-na1, YAO Min-qiang2, WANG Pei-xian1. Echocardiographic evaluation on cardiac structure and function in patients with symptomatic alcoholic cardiomyopathy [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(1): 82-85.
[6] LV Jianli1, YI Yingchun1, HAN Bo1, ZHANG Jianjun1, ZHUANG Jianxin1, SUN Yiping1, ZHAO Lijian1, WANG Ximing2, DUAN Yanhua2, WANG Anbiao3, LI. Clinical value of dualsource spiral CT in the diagnosis of congenital heart disease in children [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(7): 77-82.
[7] LI Jing, WANG Peixian, CAO Li, LIU Lili. Protective effect of ACEI on cardiac structure and function in excessive alcohol-consumption rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(6): 22-25.
[8] WANG Jie, WANG Qing, CUI Fengyu
. Application of dual source CT in congenital heart diseases
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(04): 87-90.
[9] LIU Jun,ZHANG Rong-cheng. Echocardiography and BNP in assessment of the cardiacfunction in acute myocardial infarction [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(6): 637-639.
[10] WANG Yan-qing,YU Guo-fang,MENG Jin-lai. Color Doppler ultrasound in the diagnosis of fetal portal vein malformations [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(10): 1004-1006.
[11] JIN You-eng,WANG Yu-in,HAN Bo,LIU Ting-iang,ZHANG Jian-un,ZHUANG Jian-in,HAN Xiu-hen,Wang Yi,MA Pei-an. Electrical and geometric changes after percutaneousclosure of atrial septal defect [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2006, 44(8): 806-809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!