Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (1): 1-9.doi: 10.6040/j.issn.1671-7554.0.2022.0947

• 基础医学 •    

Protective effects of grape seed proanthocyanidin extract on rats with diabetic kidney disease from the perspective of SIRT1/PGC-1α pathway

SONG Yiyun1, YU Hui1, GAO Zhaoli2, LI Xianhua1   

  1. 1. Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Nephrology, Qilu Hospital of Shandong University(Qingdao), Qingdao 266035, Shandong, China
  • Published:2023-01-10

Abstract: Objective To explore the protective effects of grape seed proanthocyanidin extract(GSPE)on rats with diabetic kidney disease(DKD)via silent information regulator 1(SIRT1)/peroxisome proliferator-activator receptor γ coactivator 1α(PGC-1α)signaling pathway. Methods A total of 40 male Sprague Dawley(SD)rats were randomly divided into control, control treatment, model and treatment groups, with 10 rats in each group. The diabetic rat models were induced by intraperitoneal injection of streptozotocin(STZ). Rats in the control treatment and treatment groups received GSPE gavage, while rats in the control and model groups were given equivalent amount of normal saline for 12 weeks. The blood glucose, serum creatinine and urinary microalbumin were detected. The pathological changes of renal tissue were observed with periodic acid Schiff(PAS)staining. Mitochondrial morphology was observed with a transmission electron microscopy. The apoptosis of renal tissue cells was evaluated with Tunel staining. The protein levels of SIRT1/PGC-1α signaling pathway-related molecules of mitochondrial biogenesis, including SIRT1, PGC-1α, nuclear respiratory factor 1(NRF1), and mitochondrial transcription factor A(TFAM)were determined with immunohistochemistry and Western blotting, respectively. Results Compared with the control group, the model group had significantly increased blood glucose [(39.38±4.18)mmol/L vs(8.21±3.57)mmol/L], serum creatinine [(55.83±3.72)μmol/L vs(40.00±2.49)μmol/L] and urinary microalbumin [(10.98±3.36)mg/L vs(1.22±0.23)mg/L](P<0.05). Compared with the control group, the model group had severer histopathological damages and mitochondrial fragmentation in the renal tissue, more significant apoptosis [(31.81±8.84)% vs(0.50±0.35)%](P<0.05), but significantly lower expressions of SIRT1(0.34±0.13 vs 0.66±0.06), PGC-1α(0.32±0.03 vs 0.71±0.13), NRF1(0.05±0.01 vs 0.21±0.02), and TFAM(0.06±0.03 vs 0.33±0.06)(P<0.05). Compared with the model group, the treatment group had significantly decreased levels of blood glucose [(27.26±3.93)mmol/L vs(39.38±4.18)mmol/L], serum creatinine [(43.50±1.70)μmol/L vs(55.83±3.72)μmol/L], urinary microalbumin [(4.05±2.06)mg/L vs(10.98±3.36)mg/L] and cell apoptosis [(4.90±1.62)% vs(31.81±8.84)%](P<0.05), but significantly increased expressions of SIRT1(0.55±0.05 vs 0.34±0.13), PGC-1α(0.62±0.14 vs 0.32±0.03), NRF1(0.16±0.02 vs 0.05±0.01), and TFAM( 0.26±0.06 vs 0.06±0.03)(P<0.05). Conclusion GSPE may improve mitochondrial biogenesis in DKD rats by regulating SIRT1/PGC-1α signaling pathway, and thus playing a protective role.

Key words: Diabetic kidney disease, Mitochondrial biogenesis, Grape seed proanthocyanidin extract

CLC Number: 

  • R587.2
[1] Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China [J]. N Engl J Med, 2016, 375(9): 905-906.
[2] 中华医学会肾脏病学分会专家组. 糖尿病肾脏疾病临床诊疗中国指南[J]. 中华肾脏病杂志, 2021, 37(3): 255-304. Expert group of Chinese society of nephrology. Chinese guidelines for diagnosis and treatment of diabetic kidney disease [J]. Chinese Journal of Nephrology, 2021, 37(3): 255-304.
[3] Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney [J]. Nat Rev Nephrol, 2017, 13(10): 629-646.
[4] Guo P, Pi H, Xu S, et al. Melatonin Improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro [J]. Toxicol Sci, 2014, 142(1): 182-195.
[5] 夏华钦, 王亮, 吴芃, 等. 介导糖尿病肾病线粒体损伤的相关信号通路[J]. 中国病理生理杂志, 2020, 36(9): 1696-1703. XIA Huaqin, WANG Liang, WU Peng, et al. Signaling pathways involved in mediating mitochondrial damage in diabetic kidney disease [J]. Chinese Journal of Pathophysiology, 2020, 36(9): 1696-1703.
[6] 王来, 祝世功. 线粒体生成与脑缺血再灌注损伤的研究进展[J]. 中国病理生理杂志, 2016, 32(8): 1478-1483. WANG Lai, ZHU Shigong. Research progress of mitochondrial biogenesis and cerebral ischemia /reperfusion injury [J]. Chinese Journal of Pathophysiology, 2016, 32(8): 1478-1483.
[7] Tang BL. Sirt1 and the mitochondria [J]. Mol Cells, 2016, 39(2): 87-95.
[8] Gao WL, Li XH, Dun XP, et al. Grape seed proanthocyanidin extract ameliorates streptozotocin-induced cognitive and synaptic plasticity deficits by inhibiting oxidative stress and preserving AKT and ERK activities [J]. Curr Med Sci, 2020, 40(3): 434-443.
[9] Sul OJ, Kim JH, Lee T, et al. GSPE protects against bleomycin-induced pulmonary fibrosis in mice via ameliorating epithelial apoptosis through inhibition of oxidative stress [J]. Oxid Med Cell Longev, 2022, 2022: 8200189. doi: 10.1155/2022/8200189.
[10] Rajasekhar S, Subramanyam MVV, Asha Devi S. Grape seed proanthocyanidin extract suppresses oxidative stress in the rat pancreas of type-1 diabetes [J]. Arch Physiol Biochem, 2021, 11: 1-13. doi: 10.1080/13813455.2021.1894452.
[11] Sherif AA, Abdelhalim SZ, Salim EI. Immunohistochemical and biochemical alterations following administration of proanthocyanidin extract in rats hepatocellular carcinoma [J]. Biomed Pharmacother, 2017, 93: 1310-1319. doi: 10.1016/j.biopha.2017.07.039.
[12] Cao AH, Wang J, Gao HQ, et al. Beneficial clinical effects of grape seed proanthocyanidin extract on the progression of carotid atherosclerotic plaques [J]. J Geriatr Cardiol, 2015, 12(4): 417-423.
[13] Xu M, Chen X, Huang Z, et al. Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation via AMPK signaling pathway [J]. J Nutr Biochem, 2020, 84: 108462. doi: 10.1016/j.jnutbio.2020.108462.
[14] Gao Z, Liu G, Hu Z, et al. Grape seed proanthocyanidins protect against streptozotocin induced diabetic nephropathy by attenuating endoplasmic Reticulum stress induced apoptosis [J]. Mol Med Rep, 2018, 18(2): 1447-1454.
[15] 赵梦秋, 任尤楠, 陶善珺, 等. 丹酚酸B对糖尿病大鼠血管舒张功能、NF-κB活化及炎症因子表达的影响[J]. 中国病理生理杂志, 2018, 34(3): 481-487. ZHAO Mengqiu, REN Younan, TAO Shanjun, et al. Effect of salvianolic acid B on vasodilatory function, NF-κB activation and inflammatory cytokine expression in diabetic rats [J]. Chinese Journal of Pathophysiology, 2018, 34(3): 481-487.
[16] 程光辉, 王帅, 陈豪, 等. 水蛭素对糖尿病肾病大鼠脂代谢及血液流变学的影响[J]. 中医临床研究, 2022, 14(22): 37-40. CHENG Guanghui, WANG Shuai, CHEN Hao, et al. Effects of hirudin on lipid metabolism and hemorheology in rats with diabetic nephropathy [J]. Clinical Journal of Chinese Medicine, 2022, 14(22): 37-40.
[17] Giacco F, Brownlee M. Oxidative stress and diabetic complications [J]. Circ Res, 2010, 107(9): 1058-1070.
[18] Shen H, Wang W. Effect of glutathione liposomes on diabetic nephropathy based on oxidative stress and polyol pathway mechanism [J]. J Liposome Res, 2021, 31(4): 317-325.
[19] Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease [J]. Kidney Int, 2018, 93(4): 803-813.
[20] 赵鹏鸣, 王俭勤, 梁耀军. 内皮细胞损伤在糖尿病肾病发病机制中的作用[J]. 中国糖尿病杂志, 2016, 24(2): 169-172. ZHAO Pengming, WANG Jianqin, LIANG Yaojun. Role of endothelial cells injury in the pathogenesis of diabetic nephropathy [J]. Chinese Journal of Diabetes, 2016, 24(2): 169-172.
[21] 周迎生, 高妍, 李斌, 等. 高脂喂养联合链脲佐菌素注射的糖尿病大鼠模型特征[J]. 中国实验动物学报, 2005, 13(3): 154-158. ZHOU Yingsheng, GAO Yan, LI Bin, et al. A rat model of type 2 diabetes mellitus induced by high fat chow and low dose streptozotocin injection [J]. Acta Laboratorium Animalis Scientia Sinica, 2005, 13(3): 154-158.
[22] Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention [J]. Toxicology, 2000, 148(2/3): 187-197.
[23] Bagchi D, Garg A, Krohn RL, et al. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro [J]. Res Commun Mol Pathol Pharmacol, 1997, 95(2): 179-189.
[24] Downing LE, Heidker RM, Caiozzi GC, et al. A grape seed procyanidin extract ameliorates fructose-induced hypertriglyceridemia in rats via enhanced fecal bile acid and cholesterol excretion and inhibition of hepatic lipogenesis [J]. PLoS One, 2015, 10(10): e0140267. doi: 10.1371/journal.pone.0140267.
[25] Busquets O, Carrasco M, Espinosa-Jiménez T, et al. GSPE pre-treatment protects against long-term Cafeteria diet-induced mitochondrial and inflammatory affectations in the Hippocampus of rats [J]. Nutr Neurosci, 2022, 25(12): 2627-2637.
[26] Lin KN, Jiang YL, Zhang SG, et al. Grape seed proanthocyanidin extract reverses multidrug resistance in HL-60/ADR cells via inhibition of the PI3K/Akt signaling pathway [J]. Biomed Pharmacother, 2020, 125: 109885. doi: 10.1016/j.biopha.2020.109885.
[27] 王雪萍, 李医明, 王钊, 等. 原花青素类成分在防治2型糖尿病作用机制方面的研究进展[J]. 中国中药杂志, 2017, 42(20): 3866-3872. WANG Xueping, LI Yiming, WANG Zhao, et al. Advances of mechanism research on procyanidin in prevention and treatment of type 2 diabetes mellitus [J]. China Journal of Chinese Materia Medica, 2017, 42(20): 3866-3872.
[28] Ginés I, Gil-Cardoso K, DAddario Claudio, et al. Long-lasting effects of GSPE on ileal GLP-1R gene expression are associated with a hypomethylation of the GLP-1R promoter in female Wistar rats [J]. Biomolecules, 2019, 9(12): E865. doi: 10.3390/biom9120865.
[29] Grau-Bové C, Ginés I, Beltrán-Debón R, et al. Glucagon shows higher sensitivity than insulin to grapeseed proanthocyanidin extract(GSPE)treatment in Cafeteria-fed rats [J]. Nutrients, 2021, 13(4): 1084. doi: 10.3390/nu13041084.
[30] Liu W, Zhao S, Wang J, et al. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice [J]. Mol Nutr Food Res, 2017, 61(9). doi: 10.1002/mnfr.201601082.
[31] Liu M, Yun P, Hu Y, et al. Effects of grape seed proanthocyanidin extract on obesity [J]. Obes Facts, 2020, 13(2): 279-291.
[32] Nunnari J, Suomalainen A. Mitochondria: in sickness and in health[J]. Cell, 2012, 148(6): 1145-1159.
[33] Wang ZM, Ying ZL, Bosy-Westphal A, et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure [J]. Am J Clin Nutr, 2010, 92(6): 1369-1377.
[34] Ahmad AA, Draves SO, Rosca M. Mitochondria in diabetic kidney disease [J]. Cells, 2021, 10(11): 2945. doi:10.3390/cells10112945.
[35] Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease [J]. Nat Rev Nephrol, 2018, 14(5): 291-312.
[36] Yang H, Bi Y, Xue L, et al. Multifaceted modulation of SIRT1 in cancer and inflammation [J]. Crit Rev Oncog, 2015, 20(1/2): 49-64.
[37] Wu YJ, Fang WJ, Pan S, et al. Regulation of Sirt1 on energy metabolism and immune response in rheumatoid arthritis [J]. Int Immunopharmacol, 2021, 101(pt a): 108175. doi: 10.1016/j.intimp.2021.108175.
[38] Zhang W, Huang Q, Zeng Z, et al. Sirt1 inhibits oxidative stress in vascular endothelial cells [J]. Oxid Med Cell Longev, 2017, 2017: 7543973. doi: 10.1155/2017/7543973.
[39] Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network [J]. Biochim Biophys Acta, 2011, 1813(7): 1269-1278.
[40] Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1[J]. Nature, 2005, 434(7029): 113-118.
[41] 张佐, 肖位忠, 舒青龙, 等. 核呼吸因子的研究进展[J]. 生命科学, 2012, 24(5): 456-462. ZHANG Zuo, XIAO Weizhong, SHU Qinglong, et al. Progress of nuclear respiratory factors [J]. Chinese Bulletin of Life Sciences, 2012, 24(5): 456-462.
[42] Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and expression of mammalian mitochondrial DNA [J]. Annu Rev Biochem, 2016, 85: 133-160. doi: 10.1146/annurev-biochem-060815-014402.
[43] Hao LY, Zhong W, Dong HB, et al. ATF4 activation promotes hepatic mitochondrial dysfunction by repressing NRF1-TFAM signalling in alcoholic steatohepatitis [J]. Gut, 2021, 70(10): 1933-1945.
[44] Yuan Y, Cruzat VF, Newsholme P, et al. Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis [J]. Mech Ageing Dev, 2016, 155: 10-21. doi: 10.1016/j.mad.2016.02.003.
[45] 张培培, 鲁科达, 夏虹, 等. 加味黄风汤对糖尿病肾病大鼠肾组织SIRT1及PGC-1α表达的影响[J]. 中华中医药杂志, 2019, 34(2): 589-593. ZHANG Peipei, LU Keda, XIA Hong, et al. Effects of Jiawei Huangfeng Decoction on the expression of SIRT1 and PGC-1α in renal tissue of rats with diabetic nephropathy [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2019, 34(2): 589-593.
[1] YANG Yan1, WANG Xiao-hua2, FAN Xiao-sheng3. Grape seed proanthocyanidin  extract in the prevention
of rat liver fibrosis
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(3): 11-.
[2] XUE Xia1,2, XIAO Zheng-da2, WANG Shu-fang2, ZHANG Rui-bin3 . Protective effects and mechanisms of ulilnastatin against renal injury in rats with diabetic nephropathy [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(1): 1-4.
[3] DU Hua-sheng1,2, ZHANG Rui-bin2, WANG Pu2, WANG Xiao-ping2, PANG Shu-guang3. Renal protective effects of licorice extracts in diabetic rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(8): 1-4.
[4] LIU Xiang-ju, GAO Hai-qing, QIU Jie, CHEN Huan-qin. Oxidative effect of grape seed proanthocyanidin extract on atherosclerosis in rabbits [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(8): 25-.
[5] ZHAI Qian, LI Baoying, GAO Haiqing, JIANG Bei. Effect of grape seed proanthocyanidin extracts on expression of aortic apolipoprotein A-Ⅰin diabetic rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(6): 1-.
[6] LI Xian-Hua, GAO Hai-Jing, LI Bao-Ying, CHENG Mei, XU Ling, HU Zhao. Effects of grape seed proanthocyanidin extracts on advanced glycation 
end products and expression of bone morphogenetic 
protein7 in diabetic nephropathy rats
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(5): 16-22.
[7] JIANG Bei, GAO Hai-Jing, LI Bao-Ying, LI Xian-Hua, CHENG Mei, ZHAI Qian. Renoprotective mechanisms of Grape seed proanthocyanidin extracts on diabetic rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(12): 1145-.
[8] CHENG Mei,GAO Hai-qing,XU Ling,LI Bao-ying,LI Xian-hua. Changes of myocardial ultrastructure induced by grape seed proanthocyanidin extracts in STZ diabetic rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(4): 404-406.
[9] LIU Xiang-ju,GAO Hai-qing,BI Yi,SHEN Lin,YOU Bei-an. Grape seed proanthocyanidin extract combined with atorvastatin in prevention of atherosclerosis in rabbits [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(11): 1131-1134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!