山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (11): 116-120.doi: 10.6040/j.issn.1671-7554.0.2023.0449
• • 上一篇
高辉香,宋阳
中图分类号:
[1] Vahe C, Benomar K, Espiard S, et al. Diseases associated with calcium-sensing receptor[J]. Orphanet J Rare Dis, 2017, 12(1): 19. doi:10.1186/s13023-017-0570-z. [2] Hendy GN, DSouza-Li L, Yang B, et al. Mutations of the calcium-sensing receptor(CASR)in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia[J]. Hum Mutat, 2000, 16(4): 281-296. [3] Hannan FM, Kallay E, Chang WH, et al. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases[J]. Nat Rev Endocrinol, 2018, 15(1): 33-51. [4] Hannan FM, Babinsky VN, Thakker RV. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis[J]. J Mol Endocrinol, 2016, 57(3): R127-R142. [5] Rasmussen AQ, Jørgensen NR, Schwarz P. Identification and functional characterization of a novel mutation in the human calcium-sensing receptor that co-segregates with autosomal-dominant hypocalcemia[J]. Front Endocrinol, 2018, 9: 200. doi:10.3389/fendo.2018.00200. [6] Tfelt-Hansen J, Schwarz P, Brown EM, et al. The calcium-sensing receptor in human disease[J]. Front Biosci, 2003, 8: s377-s390. doi: 10.2741/1068. [7] Kinoshita Y, Hori M, Taguchi M, et al. Functional activities of mutant calcium-sensing receptors determine clinical presentations in patients with autosomal dominant hypocalcemia[J]. J Clin Endocrinol Metab, 2014, 99(2): E363-E368. [8] Roszko KL, Bi RD, Mannstadt M. Autosomal dominant hypocalcemia(hypoparathyroidism)types 1 and 2[J]. Front Physiol, 2016, 7: 458. doi:10.3389/fphys.2016.00458. [9] Gomes V, Silvestre C, Ferreira F, et al. Autosomal dominant hypocalcaemia: identification of two novel variants of CASR gene[J]. BMJ Case Rep, 2020, 13(6): e234391. doi:10.1136/bcr-2020-234391. [10] Hauache OM, Hu J, Ray K, et al. Effects of a calcimimetic compound and naturally activating mutations on the human Ca2+ receptor and on Ca2+ receptor/metabotropic glutamate chimeric receptors[J]. Endocrinology, 2000, 141(11): 4156-4163. [11] Abate EG, Clarke BL. Review of hypoparathyroidism[J]. Front Endocrinol, 2017, 7: 172. doi:10.3389/fendo.2016.00172. [12] Winer KK, Kelly A, Johns A, et al. Long-term parathyroid hormone 1-34 replacement therapy in children with hypoparathyroidism[J]. J Pediatr, 2018, 203: 391-399.e1. doi:10.1016/j.jpeds.2018.08.010. [13] Mittelman SD, Hendy GN, Fefferman RA, et al. A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone[J]. J Clin Endocrinol Metab, 2006, 91(7): 2474-2479. [14] Sanda S, Schlingmann KP, Newfield RS. Autosomal dominant hypoparathyroidism with severe hypomagnesemia and hypocalcemia, successfully treated with recombinant PTH and continuous subcutaneous magnesium infusion[J]. J Pediatr Endocrinol Metab, 2008, 21(4): 385-391. [15] Winer KK, Fulton KA, Albert PS, et al. Effects of pump versus twice-daily injection delivery of synthetic parathyroid hormone 1-34 in children with severe congenital hypoparathyroidism[J]. J Pediatr, 2014, 165(3): 556-563. [16] Shiohara M, Shiozawa R, Kurata K, et al. Effect of parathyroid hormone administration in a patient with severe hypoparathyroidism caused by gain-of-function mutation of calcium-sensing receptor[J]. Endocr J, 2006, 53(6): 797-802. [17] Newfield RS. Recombinant PTH for initial management of neonatal hypocalcemia[J]. N Engl J Med, 2007, 356(16): 1687-1688. [18] Winer KK, Sinaii N, Peterson D, et al. Effects of once versus twice-daily parathyroid hormone 1-34 therapy in children with hypoparathyroidism[J]. J Clin Endocrinol Metab, 2008, 93(9): 3389-3395. [19] Theman TA, Collins MT, Dempster DW, et al. PTH(1-34)replacement therapy in a child with hypoparathyroidism caused by a sporadic calcium receptor mutation[J]. J Bone Miner Res, 2009, 24(5): 964-973. [20] Fox A, Gilbert R. Use of teriparatide in a four year old patient with autosomal dominant hypocalcaemia[J]. Arch Dis Child, 2016, 101(9): e2. doi:10.1136/archdischild-2016-311535.66. [21] Vargas-Poussou R, Huang CF, Hulin P, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome[J]. J Am Soc Nephrol, 2002, 13(9): 2259-2266. [22] Mayr B, Schnabel D, Dörr HG, et al. GENETICS IN ENDOCRINOLOGY: gain and loss of function mutations of the calcium-sensing receptor and associated proteins: current treatment concepts[J]. Eur J Endocrinol, 2016, 174(5): R189-R208. [23] Sato K, Hasegawa Y, Nakae J, et al. Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing receptor gene[J]. J Clin Endocrinol Metab, 2002, 87(7): 3068-3073. [24] Hu JX, Mora S, Weber G, et al. Autosomal dominant hypocalcemia in monozygotic twins caused by a de novo germline mutation near the amino-terminus of the human calcium receptor[J]. J Bone Miner Res, 2004, 19(4): 578-586. [25] Bilezikian JP, Brandi ML, Cusano NE, et al. Management of hypoparathyroidism: present and future[J]. J Clin Endocrinol Metab, 2016, 101(6): 2313-2324. [26] Ikari A, Okude C, Sawada H, et al. Activation of a polyvalent cation-sensing receptor decreases magnesium transport via claudin-16[J]. Biochim Biophys Acta, 2008, 1778(1): 283-290. [27] Ferrè S, Hoenderop JGJ, Bindels RJM. Sensing mechanisms involved in Ca2+ and Mg2+ homeostasis[J]. Kidney Int, 2012, 82(11): 1157-1166. [28] Dayal D, Gupta A, Gupta S, et al. Recombinant parathyroid hormone for hypoparathyroidism in children: a narrative review[J]. Pediatr Endocrinol Diabetes Metab, 2019, 25(4): 194-201. [29] Vahle JL, Zuehlke U, Schmidt A, et al. Lack of bone neoplasms and persistence of bone efficacy in Cynomolgus macaques after long-term treatment with teriparatide[rhPTH(1-34)] [J]. J Bone Miner Res, 2008, 23(12): 2033-2039. [30] Vahle JL, Sato M, Long GG, etal. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone(1-34)for 2 years and relevance to human safety[J]. Toxicol Pathol, 2002, 30(3): 312-321. [31] Mayr B, Glaudo M, Schöfl C. Activating calcium-sensing receptor mutations: prospects for future treatment with calcilytics[J]. Trends Endocrinol Metab, 2016, 27(9): 643-652. [32] Nakamura A, Hotsubo T, Kobayashi K, et al. Loss-of-function and gain-of-function mutations of calcium-sensing receptor: functional analysis and the effect of allosteric modulators NPS R-568 and NPS 2143[J]. J Clin Endocrinol Metab, 2013, 98(10): E1692-E1701. |
[1] | 符晓莉,魏绪霞,徐俊杰,薛宁,张乐,陈红苓. 儿童自身免疫性肠病1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(9): 118-124. |
[2] | 周加敏,仇静静,陈秀梅,宋西成,孙岩. 儿童气管支气管异物936例临床分析[J]. 山东大学学报 (医学版), 2023, 61(4): 71-76. |
[3] | 杨晓斐,韩波,姜殿东,吕建利,伊迎春,张建军,赵立健,王静,王艳,袁辉. 经导管射频消融术治疗儿童快速性心律失常972例临床分析[J]. 山东大学学报 (医学版), 2023, 61(2): 49-56. |
[4] | 宋绍秀,徐勇胜. 儿童肺炎支原体肺炎合并肺栓塞9例临床分析并文献复习[J]. 山东大学学报 (医学版), 2023, 61(11): 96-103. |
[5] | 曹丹凤,刘宗花,王君芝,张国翔. 女性儿童期家庭功能障碍对成年后妊娠期抑郁症状的独立和累积作用[J]. 山东大学学报 (医学版), 2022, 60(6): 97-101. |
[6] | 薛宁,郭庆伟. 儿童误吞高吸水性树脂球32例临床分析[J]. 山东大学学报 (医学版), 2022, 60(2): 65-68. |
[7] | 谢心怡,张阿敏,郑文宇,宁浩南,闫宪康,马辰晖,李福海. 基于准确病原的儿童大叶性肺炎炎症特点[J]. 山东大学学报 (医学版), 2022, 60(12): 52-57. |
[8] | 孔林笑语,孙书珍,余丽春,贾梦文. 188例儿童系统性红斑狼疮5年生存率及预后分析[J]. 山东大学学报 (医学版), 2022, 60(12): 69-76. |
[9] | 梁子婷,许长娟,曾荣,张锦涛,曾庆师,董亮. 9例儿童异基因造血干细胞移植后闭塞性细支气管炎综合征的临床特征[J]. 山东大学学报 (医学版), 2022, 60(12): 58-62. |
[10] | 秦虹,张士松,胡元军. 经脐单部位双通道腹腔镜手术治疗38例小儿急性阑尾炎[J]. 山东大学学报 (医学版), 2022, 60(12): 77-81. |
[11] | 张阿敏,李国盛,李福海. 儿童支原体大叶性肺炎肺泡灌洗液细胞因子与局部炎症的相关性[J]. 山东大学学报 (医学版), 2022, 60(11): 82-88. |
[12] | 冯鑫鑫,韩波,张丽,马孟洁,陈思宇. 长链非编码RNA NONHSAT247814.1在18例儿童心肌炎中的表达及体外细胞实验观察[J]. 山东大学学报 (医学版), 2022, 60(10): 27-32. |
[13] | 王延海,刘尹莉,刘东旭. 30例骨性Ⅲ类畸形扁桃体肥大儿童扁桃体切除术后模拟上气道内部气流的变化[J]. 山东大学学报 (医学版), 2021, 59(8): 67-73. |
[14] | 马玉杰,黄启坤,孙丽伟,刘艳丽. 儿童嗜酸性粒细胞性胃肠炎伴胸腹水1例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(7): 125-128. |
[15] | 袁媛,徐翠萍,张吉甜. 腹部闭合伤并发高位肠瘘患儿的营养支持1例[J]. 山东大学学报 (医学版), 2021, 59(5): 119-121. |
|