山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (7): 27-33.doi: 10.6040/j.issn.1671-7554.0.2022.1434
• 基础医学 • 上一篇
管伟1,2,白云峰1,杜胜杰1,王月兰3,李希明1,2
GUAN Wei1,2, BAI Yunfeng1, DU Shengjie1, WANG Yuelan3, LI Ximing1,2
摘要: 目的 分析右美托咪定对人神经母细胞瘤SH-SY5Y细胞表达谱差异的影响,探讨右美托咪定在脑保护中的潜在机制。 方法 培养SH-SY5Y细胞,分为实验组(T组,生物学重复n=3)和对照组(C组,生物学重复n=3)。实验组用右美托咪定刺激48 h,对照组相同条件下用DMSO处理。使用Trizol提取RNA,在Illumina Novaseq平台进行RNA测序。采用Limma分析实验组与对照组的差异基因,并对差异基因进行基因本体(GO)富集分析及京都基因与基因组百科全书(KEGG)信号通路富集分析。 结果 T组与C组相比,共有211个差异表达基因(上调105个,下调106个)。其中FGF1、GNG13、P2RY4在实验组和对照组中表达差异明显,差异倍数分别为2.23、2.00和6.56。GO富集分析示差异基因主要富集于磷脂酶C活化的G蛋白偶联受体信号通路、蛋白激酶B信号的调控、BMP信号通路。KEGG通路富集分析示差异基因主要富集于白细胞跨内皮迁移。 结论 FGF1、GNG13、P2RY4等基因可能参与右美托咪定对脑的保护作用。右美托咪定可能主要通过炎症机制参与对中枢神经系统的保护。
中图分类号:
[1] 翟菲菲, 黄宇光. 围术期神经认知障碍: 从术后到术前,从临床指标到生物学指标[J]. 临床麻醉学杂志, 2019, 35(4): 317-318. [2] Nathan N. Beyond emergence: understanding postoperative cognitive dysfunction(POCD)[J]. Anesth Analg, 2018, 127(2): 323. [3] Lee S. Dexmedetomidine: present and future directions [J]. Korean J Anesthesiol, 2019, 72(4): 323-330. [4] Bao N, Tang B. Organ-protective effects and the underlying mechanism of dexmedetomidine [J]. Mediators Inflamm, 2020, 2020: 6136105. doi: 10.1155/2020/6136105. [5] 陶广华, 李卫, 刘文值. 右美托咪定围术期应用的研究进展[J]. 中国药房, 2017, 28(5): 706-710. [6] Sun YB, Zhao H, Mu DL, et al. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis [J]. Cell Death Dis, 2019, 10(3): 167. [7] Zhang Y, Li M, Cui E, et al. Dexmedetomidine attenuates sevoflurane-induced neurocognitive impairment through α2-adrenoceptors [J]. Mol Med Rep, 2021, 23(1): 38. [8] Zhao W, Hu Y, Chen H, et al. The effect and optimal dosage of dexmedetomidine plus sufentanil for postoperative analgesia in elderly patients with postoperative delirium and early postoperative cognitive dysfunction: a single-center, prospective, randomized, double-blind, controlled trial [J]. Front Neurosci, 2020, 14: 549516. doi: 10.3389/fnins.2020.549516. [9] Shi H, Du X, Wu F, et al. Dexmedetomidine improves early postoperative neurocognitive disorder in elderly male patients undergoing thoracoscopic lobectomy [J]. Exp Ther Med, 2020, 20(4): 3868-3877. [10] Ritchie M E, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies [J]. Nucleic Acids Res, 2015, 43(7): e47. doi: 10.1093/nar/gkv007. [11] Pomaznoy M, Ha B, Peters B. GOnet: a tool for interactive gene ontology analysis [J]. BMC Bioinformatics, 2018, 19(1): 470. [12] Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs [J]. Nucleic Acids Res, 2017, 45(D1): D353-D361. [13] Zhang W, Yu J, Guo M, et al. Dexmedetomidine attenuates glutamate-induced cytotoxicity by inhibiting the mitochondrial-mediated apoptotic pathway [J]. Med Sci Monit, 2020, 26: e922139. doi: 10.12659/MSM.922139. [14] Yang JJ, Zhao YH, Yin KW, et al. Dexmedetomidine inhibits inflammatory response and oxidative stress through regulating miR-205-5p by targeting HMGB1 in cerebral ischemic/reperfusion [J]. Immunopharmacol Immunotoxicol, 2021, 43(4): 478-486. [15] Liaquat Z, Xu X, Zilundu PLM, et al. The current role of dexmedetomidine as neuroprotective agent: an updated review [J]. Brain Sci, 2021, 11(7): 846. [16] Nguyen V, Tiemann D, Park E, et al. Alpha-2 agonists [J]. Anesthesiol Clin, 2017, 35(2): 233-245. [17] Li P, Shen T, Luo X, et al. Modulation of microglial phenotypes by dexmedetomidine through TREM2 reduces neuroinflammation in heatstroke [J]. Sci Rep, 2021, 11(1): 13345. doi:10.1038/s41598-021-92906-5. [18] Wang N, Wang M. Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway [J]. BMC Anesthesiol, 2019, 19(1): 134. [19] Shan Y, Yang F, Tang Z, et al. Dexmedetomidine ameliorates the neurotoxicity of sevoflurane on the immature brain through the BMP/SMAD signaling pathway [J]. Front Neurosci, 2018, 12: 964. doi: 10.3389/fnins.2018.00964. [20] Zhong J, Zou H. BMP signaling in axon regeneration [J]. Curr Opin Neurobiol, 2014, 27: 127-134. doi: 10.1016/j.conb.2014.03.009. [21] Mei B, Li J, Zuo Z. Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor [J]. Brain Behav Immun, 2021, 91: 296-314. doi: 10.1016/j.bbi.2020.10.008. [22] Rajendran R, Böttiger G, Stadelmann C, et al. FGF/FGFR pathways in multiple sclerosis and in its disease models [J]. Cells, 2021, 10(4): 884. [23] Ghazavi H, Hoseini SJ, Ebrahimzadeh-Bideskan A, et al. Fibroblast growth factor type 1(FGF1)-overexpressed adipose-derived mesenchaymal stem cells(AD-MSC(FGF1))induce neuroprotection and functional recovery in a rat stroke model [J]. Stem Cell Rev Rep, 2017, 13(5): 670-685. [24] Tao QQ, Sun YM, Liu ZJ, et al. A variant within FGF1 is associated with Alzheimer's disease in the Han Chinese population [J]. Am J Med Genet B Neuropsychiatr Genet, 2014, 165b(2): 131-136. [25] Wu Y, Wu C, Ye L, et al. Exogenous fibroblast growth factor 1 ameliorates diabetes-induced cognitive decline via coordinately regulating PI3K/AKT signaling and PERK signaling [J]. Cell Commun Signal, 2020, 18(1): 81. [26] Sanfilippo C, Musumeci G, Kazakova M, et al. GNG13 is a potential marker of the state of health of Alzheimers disease patients cerebellum [J]. J Mol Neurosci, 2021, 71(5): 1046-1060. [27] Li Y, Shi L, Yue L, et al. Hippocampal gene expression profiling in a rat model of functional constipation reveals abnormal expression genes associated with cognitive function [J]. Neurosci Lett, 2018, 675: 103-109. doi: 10.1016/j.neulet.2018.03.023. [28] Subramaniam B, Shankar P, Shaefi S, et al. Effect of intravenous acetaminophen vs placebo combined with propofol or dexmedetomidine on postoperative delirium among older patients following cardiac surgery: the DEXACET randomized clinical trial [J]. JAMA, 2019, 321(7): 686-696. [29] Alves M, Gomez-Villafuertes R, Delanty N, et al. Expression and function of the metabotropic purinergic P2Y receptor family in experimental seizure models and patients with drug-refractory epilepsy [J]. Epilepsia, 2017, 58(9): 1603-1614. [30] Mantione KJ, Kream RM, Kuzelova H, et al. Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq [J]. Med Sci Monit Basic Res, 2014, 20: 138-142. doi: 10.12659/MSMBR.892101. |
[1] | 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88. |
[2] | 李燕,陈萍,赵红玉,杨文采,周佩瑶,李大启. 奥布替尼联合PD-1抑制剂和来那度胺治疗继发性中枢神经系统淋巴瘤1例[J]. 山东大学学报 (医学版), 2022, 60(10): 120-124. |
[3] | 周道斌,张炎. 原发性中枢神经系统淋巴瘤诊治现状及进展[J]. 山东大学学报 (医学版), 2019, 57(7): 31-39. |
[4] | 宋媛媛,李桂梅. 婴儿Lowe综合征1例[J]. 山东大学学报 (医学版), 2019, 57(4): 119-121. |
[5] | 李蒙蒙,王苗苗,刁雪琴,田克立,徐霞,任桂杰. 阿尔茨海默病细胞模型中lncRNA RP11-543N12.1对CDH13表达的调控作用[J]. 山东大学学报(医学版), 2017, 55(3): 12-18. |
[6] | 于玉娟,高成杰,王晓鹏,李波. 帕瑞昔布钠对脑肿瘤切除术患者炎症反应的影响及脑保护作用[J]. 山东大学学报(医学版), 2016, 54(6): 65-68. |
[7] | 刁晓君, 陈春富. 神经系统Whipple病1例并文献复习[J]. 山东大学学报(医学版), 2015, 53(10): 46-50. |
[8] | 郭松青, 方向志, 高巨, 葛亚丽. 右美托咪定对体外循环下心脏瓣膜置换术患者 心肌损伤的影响[J]. 山东大学学报(医学版), 2014, 52(S2): 20-22. |
[9] | Hasan Akhtar, 王茜,李传福. 中枢神经系统表面含铁血黄素沉积症的影像表现(附1例报道)[J]. 山东大学学报(医学版), 2014, 52(5): 111-112. |
[10] | 谢迪东1,2*,龚正3*,李容2,李慧2,刘宏达2,孙金鹏1,2,庞琦1. 磷酸酶STEP的Q-loop中T541参与催化反应的机制[J]. 山东大学学报(医学版), 2013, 51(8): 38-44. |
[11] | 周廷发1,唐贞申2. 右美托咪啶对高血压患者开颅术麻醉的影响[J]. 山东大学学报(医学版), 2012, 50(8): 81-. |
[12] | 赵端允1,迟令懿1,周旭东1,王洁2,胡科3,邵毅1. 脑实质内型表皮样囊肿临床特点及其治疗[J]. 山东大学学报(医学版), 2012, 50(1): 109-112. |
[13] | 张凯,李传福,刘影,冯德朝,孟祥水,郑金勇,丛培新 . 流动敏感交互反转恢复与MR磁敏感对比剂动态增强技术评价颅内肿瘤血流灌注的对照研究[J]. 山东大学学报(医学版), 2007, 45(6): 621-624. |
[14] | 王志刚,王舟,赵鑫,卜祥梅,冯昌 . 异丙酚对兔全身热疗后脑保护机制的研究[J]. 山东大学学报(医学版), 2007, 45(12): 1289-1293. |
|