山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (2): 95-101.doi: 10.6040/j.issn.1671-7554.0.2022.1214
徐帅娅1,2,罗芳琼1,巴晨曦1,2,张鑫茹1,2,马喆1
XU Shuaiya1,2, LUO Fangqiong1, BA Chenxi1,2, ZHANG Xinru1,2, MA Zhe1
摘要: 目的 探究多模态超声对乳腺影像报告与数据系统( BI-RADS)4类乳腺病变的诊断价值。 方法 选取行乳腺病变穿刺活检或切除术患者63例共70个BI-RADS 4类病灶,包括良性病变40个(良性组)与恶性病变30个(恶性组),对其一般临床特征、术前超声诊断信息、术后病理资料进行回顾性分析。 结果 BI-RADS 4类乳腺良恶性病变在结节形状、生长方向、内部回声、边缘、边界、后方回声衰减、钙化等方面均差异无统计学意义(P>0.05),而在高回声晕、Adler血流分级方面差异有统计学意义(P<0.05)。恶性组的剪切波传播速度最大值(SWVmax)、弹性成像/B模式比(EI/B)、应变比(SR)均高于良性组,差异有统计学意义(P<0.05)。SWVmax的受试者工作特征曲线下的面积(AUC)为0.94,最佳截断值为2.85 m/s,诊断的灵敏度和特异度分别为86.7%和95.0%。EI/B的AUC为0.92,最佳截断值为1.01,诊断的灵敏度和特异度分别为96.7%和82.5%。SR的AUC为0.78,最佳截断值为7.86,诊断的灵敏度和特异度分别为76.7%和72.5%。多因素二分类Logistic分析结果显示,与良性组比较,BI-RADS 4类乳腺恶性结节的SWVmax和EI/B的OR值分别为12.97(P<0.05)和1.51(P<0.05)。 结论 合理应用多模态超声检查可有效鉴别BI-RADS 4类乳腺良恶性病变,减少不必要的穿刺活检。
中图分类号:
[1] Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview [J]. Int J Cancer, 2021. doi: 10.1002/ijc.33588. [2] 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. [3] Mercado CL. BI-RADS update [J]. Radiol Clin North Am, 2014, 52(3): 481-487. [4] American College of Radiology(ACR). ACR BI-RADS Ultrasound/ACR breast imaging reporting and data system,breast imaging atlas [S]. Reston: American College of Radiology,2013. [5] Stachs A, Stubert J, Reimer T, et al. Benign breast disease in women [J]. Dtsch Arztebl Int, 2019, 116(33-34): 565-574. [6] Tekcan Sanli DE, Yildirim D, Kandemirli SG, et al. Evaluation of multiparametric shear wave elastography indices in malignant and benign breast lesions [J]. Acad Radiol, 2022, 29(Suppl 1): S50-S61. [7] Cantisani V, David E, Barr RG, et al. US-Elastography for breast lesion characterization: prospective comparison of US BIRADS, strain elastography and shear wave elastography [J]. Ultraschall Med, 2021, 42(5): 533-540. [8] 周建桥, 詹维伟. 超声乳腺影像报告数据系统及其解读 [J]. 中华医学超声杂志(电子版), 2011, 8(6): 1332-1341. [9] Ohashi R, Matsubara M, Watarai Y, et al. Pleomorphic lobular carcinoma of the breast: a comparison of cytopathological features with other lobular carcinoma variants [J]. Cytopathology, 2017, 28(2): 122-130. [10] Irshad A, Leddy R, Pisano E, et al. Assessing the role of ultrasound in predicting the biological behavior of breast cancer [J]. AJR Am J Roentgenol, 2013, 200(2): 284-290. [11] 丁志颖, 黄敏, 郭建锋. 比较三阴性乳腺癌与BI-RADS 4A类不典型纤维腺瘤及腺病超声表现[J]. 中国医学影像技术, 2017, 33(12): 1830-1834. DING Zhiying, HUANG Min, GUO Jianfeng. Comparison of ultrasonic manifestations among triple-negative breast cancer and BI-RADS 4A atypical fibroadenoma or adenosis [J]. Chinese Journal of Medical Imaging Technology, 2017, 33(12): 1830-1834. [12] Shao S, Yao M, Li X, et al. Conventional and contrast-enhanced ultrasound features in sclerosing adenosis and correlation with pathology [J]. Clin Hemorheol Microcirc, 2021, 77(2): 173-181. [13] Ophir J, Céspedes I, Ponnekanti H, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues [J]. Ultrason Imaging, 1991, 13(2): 111-134. [14] Shiina T, Nightingale KR, Palmeri ML, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology [J]. Ultrasound Med Biol, 2015, 41(5): 1126-1147. [15] Ferraioli G, Filice C, Castera L, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver [J]. Ultrasound Med Biol, 2015, 41(5): 1161-1179. [16] Cosgrove D, Barr R, Bojunga J, et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid [J]. Ultrasound Med Biol, 2017, 43(1): 4-26. [17] Barr RG, Nakashima K, Amy D, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast [J]. Ultrasound Med Biol, 2015, 41(5): 1148-1160. [18] Barr RG, Cosgrove D, Brock M, et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 5. Prostate [J]. Ultrasound Med Biol, 2017, 43(1): 27-48. [19] 李涛, 何广敏, 刘观成,等.剪切波弹性成像鉴别乳腺影像报告和数据系统(BI-RADS)4类乳腺肿块 [J]. 中国医学影像技术, 2021, 37(1): 67-70. LI Tao, HE Guangmin, LIU Guancheng, et al. Shear wave elastography parameters for differentiating breast imaging reporting and data system(BI-RADS)4 breast masses [J]. Chinese Journal of Medical Imaging Technology, 2021, 37(1): 67-70. [20] 李良, 葛娜, 孙霄, 等. 两种声触诊组织定量技术鉴别乳腺包块良恶性的价值[J]. 山东大学学报(医学版), 2018, 56(4): 70-75. LI Liang, GE Na, SUN Xiao, et al. Value of VTQ and VTIQ on differentation of benign and malignant breast masses [J]. Journal of Shandong University(Health Sciences), 2018, 56(4): 70-75. [21] Barr RG, De Silvestri A, Scotti V, et al. Diagnostic performance and accuracy of the 3 interpreting methods of breast strain elastography: a systematic review and meta-analysis [J]. J Ultrasound Med, 2019, 38(6): 1397-1404. [22] Leong LCH, Moey THL, Tan PH, et al. Comparative study of pattern-based versus size ratio ultrasound strain elastographic techniques on breast masses [J]. J Ultrasound Med, 2019, 38(7): 1779-1790. [23] Tay IWM, Sim LS, Moey THL, et al. Shear wave versus strain elastography of breast lesions—the value of incorporating boundary tissue assessment [J]. Clin Imaging, 2022, 82: 228-233. doi: 10.1016/j.clinimag.2021.11.030. [24] Golatta M, Pfob A, Büsch C, et al. The potential of combined shear wave and strain elastography to reduce unnecessary biopsies in breast cancer diagnostics—an international, multicentre trial [J]. Eur J Cancer, 2022, 161: 1-9. doi: 10.1016/j.ejca.2021.11.005. [25] Ganau S, Andreu FJ, Escribano F, et al. Shear-wave elastography and immunohistochemical profiles in invasive breast cancer: evaluation of maximum and mean elasticity values [J]. Eur J Radiol, 2015, 84(4): 617-622. [26] Choi HY, Seo M, Sohn YM, et al. Shear wave elastography for the diagnosis of small(≤2 cm)breast lesions: added value and factors associated with false results[J]. Br J Radiol, 2019, 92(1097): 20180341. doi:10.1259/bjr.20180341. [27] Barr RG. Real-time ultrasound elasticity of the breast: initial clinical results[J]. Ultrasound Q, 2010, 26(2): 61-66. [28] Barr RG, Destounis S, Lackey LB 2nd, et al. Evaluation of breast lesions using sonographic elasticity imaging: a multicenter trial [J]. J Ultrasound Med, 2012, 31(2): 281-287. [29] 陈雅玲, 高毅, 王芬, 等. 乳腺剪切波弹性成像的各向异性与组织病理学的相关性[J]. 中华超声影像学杂志, 2017, 26(3): 254-258. CHEN Yaling, GAO Yi, WANG Fen, et al. Anisotropy of shear wave elastography in breast lesions and its correlation with histopathology [J]. Chinese Journal of Ultrasonography, 2017, 26(3): 254-258. |
[1] | 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64. |
[2] | 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87. |
[3] | 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26. |
[4] | 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46. |
[5] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[6] | 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5. |
[7] | 艾星子·艾里,郭铮宇,张晓霏. 子宫腺肌病高强度聚焦超声消融治疗研究进展[J]. 山东大学学报 (医学版), 2022, 60(7): 36-42. |
[8] | 任大壮,周玮琰,赵博军. 角巩膜铁屑样异物1例[J]. 山东大学学报 (医学版), 2022, 60(7): 129-132. |
[9] | 张艺馨,赵玉立,封丽. 超声特征及术前CA-125联合对51例卵巢交界性及Ⅰ期恶性肿瘤的鉴别诊断[J]. 山东大学学报 (医学版), 2022, 60(7): 104-109. |
[10] | 陶国伟,王芳,董向毅,徐亚瑄,赵琳丽,胡蓓蓓. 子宫腺肌病的超声与MRI诊断及进展[J]. 山东大学学报 (医学版), 2022, 60(7): 56-65. |
[11] | 董亮,崔文超,周青,张龙云,周炜,张欣,赵超. 比较超声与增强CT经皮穿刺混杂密度胸部病变[J]. 山东大学学报 (医学版), 2022, 60(5): 98-103. |
[12] | 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29. |
[13] | 张雪,白改改,陶国伟,吴海芳,罗霞,刘培淑. 脐尿管未闭导致膀胱脱垂同时合并脐膨出的罕见病例1例[J]. 山东大学学报 (医学版), 2022, 60(2): 115-117. |
[14] | 李淑华,卢矫阳,潘若孜,袁兰,卢雪峰. 沟槽状胰腺炎1例[J]. 山东大学学报 (医学版), 2022, 60(12): 119-121. |
[15] | 周亚杰,王斐,于理想,余之刚. 女性乳腺癌保乳手术决策相关因素[J]. 山东大学学报 (医学版), 2022, 60(12): 1-6. |
|