山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (2): 13-20.doi: 10.6040/j.issn.1671-7554.0.2019.1278
徐焱焱1,2,颜贝2,3,王锐2,王红燕1,3
XU Yanyan1,2, YAN Bei2,3, WANG Rui2, WANG Hongyan1,3
摘要: 目的 探讨经血间充质干细胞(MenSCs)移植改善化疗所致卵巢早衰(POF)小鼠卵巢功能的效果和分子机制。 方法 48只C57BJ雌鼠被随机分成3组:对照组、POF组和干细胞组。环磷酰胺和白消安腹腔注射构建POF小鼠;干细胞组小鼠在化疗药物注射后3 d开始鼠尾静脉注射MenSCs。采用qRT-PCR定量分析卵巢内生长因子受体结合蛋白10(GRB10)的mRNA表达;采用Western blotting 定量分析卵巢内GRB10、叉头状转录因子O亚家族蛋白3(FOXO3a)、p-FOXO3a、胰岛素样生长因子受体(IGF-1R)、p-IGF-1R、蛋白激酶B(AKT)、p-AKT的蛋白表达。 结果 对照组、POF组、干细胞组的血清雌二醇浓度分别为(222.29±35.13)、(90.87±28.76)、(193.24±48.74)pg/mL,3组之间差异有统计学意义(F=19.332,P<0.001);POF组低于对照组(P<0.001)和干细胞组(P<0.001)。对照组、POF组、干细胞组小鼠超排的成熟卵子数分别为(40.00±10.07)、(9.00±7.42)、(24.60±10.24)个,3组之间差异有统计学意义(F=13.792,P=0.001);对照组(P<0.001)和干细胞组(P=0.021)高于POF组,且对照组高于干细胞组(P=0.023)。Western blotting检测对照组、POF组、干细胞组卵巢内GRB10蛋白条带灰度值分别为1.22±0.05、1.82±0.13、1.10±0.09,3组之间差异有统计学意义(F=94.340, P<0.001);POF组高于对照组(P<0.001)和干细胞组(P<0.001)。3组中p-FOXO3a的蛋白条带灰度值分别为0.80±0.08、0.33±0.06、0.76±0.05;3组之间差异有统计学意义(F=98.673,P<0.001);POF组低于对照组(P<0.001)和干细胞组(P<0.001)。3组小鼠中p-IGF-1R的蛋白条带灰度值分别为0.31±0.10、 0.32±0.08、0.42±0.01,3组之间差异有统计学意义(F=3.882,P=0.044);干细胞组p-IGF-1R蛋白含量高于对照组(P=0.023)和POF组(P=0.039)。对照组、POF组、干细胞组小鼠的p-AKT蛋白条带灰度值分别为0.57±0.02、0.51±0.05、0.64±0.03,3组之间差异有统计学意义(F=22.227,P<0.001);干细胞组蛋白含量高于对照组(P=0.005)和POF组(P<0.001),对照组高于POF组(P=0.004)。 结论 MenSCs移植后,可能是通过干细胞旁分泌的胰岛素样生长因子1(IGF-1)与IGF-1R结合,促进p-IGF-1R的表达以及下调卵巢靶细胞GRB10的表达,激活IGF-1信号通路,促进磷脂酰肌醇3-激酶(PI3K)-AKT-FOXO3a途径下游因子p-FOXO3a的表达,从而激活原始卵泡发育,改善POF。
中图分类号:
[1] | Nicolas S, Luc V, François P, et al. Transplanted bone marrow cells do not provide new oocytes but rescue fertility in female mice following treatment with chemotherapeutic agents[J]. Cell Reprogram, 2012, 14(2): 123-132. |
[2] | Liu J, Zhang H, Zhang Y, et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats[J]. Mol Cells, 2014, 37(12): 865-872. |
[3] | Xiao GY, Liu IH, Cheng CC, et al. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy[J]. PloS One, 2014, 9(9): e106538. |
[4] | Yin N, Zhao W, Luo Q, et al. Restoring ovarian function with human placenta-derived mesenchymal stem cells in autoimmune-induced premature ovarian failure mice mediated by treg cells and associated cytokines[J]. Reprod Sci, 2018, 25(7): 1073-1082. |
[5] | Shufang W, Ling Y, Min S, et al. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure[J]. Biomed Res Int, 2013: 690491. doi: 10.1155/2013/690491. |
[6] | Su J, Ding L, Cheng J, et al. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency[J]. Hum Reprod, 2016, 31(5): 1075-1086. |
[7] | Lai D, Wang F, Yao X, et al. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure[J]. J Transl Med, 2015, 13(1): 155-168. |
[8] | Liu T, Huang Y, Zhang J, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model[J]. Stem Cells Dev, 2014, 23(13): 1548-1557. |
[9] | Wang Z, Wang Y, Yang T, et al. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice[J]. Stem Cell Res Ther, 2017, 8(1): 11-25. |
[10] | Feng P, Li P, Tan J. Human menstrual blood-derived stromal cells promote recovery of premature ovarian insufficiency via regulating the ECM-dependent FAK/AKT signaling[J]. Stem Cell Rev, 2018, 15(2): 241-255. |
[11] | Pradeep R, Lijun S, Chong R, et al. Activation of Akt(PKB)and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development[J]. Dev Biol, 2005, 281(2): 160-170. |
[12] | Fangyuan W, Li W, Xiaofen Y, et al. Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure[J]. Stem Cell Res Ther, 2014, 4(5): 124-134. |
[13] | Zhang Q, Bu S, Sun J, et al. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage[J]. Stem Cell Res Ther, 2017, 8(1): 270-282. |
[14] | Zhang Q, Xu M, Yao X, et al. Human amniotic epithelial cells inhibit granulosa cell apoptosis induced by chemotherapy and restore the fertility[J]. Stem Cell Res Ther, 2015, 6(1): 152-161. |
[15] | 彭静,肖娜,程腊梅. 骨髓来源间充质干细胞对卵巢早衰小鼠的修复作用[J]. 中南大学学报(医学版), 2018, 43(1): 7-13. PENG Jing, XIAO Na, CHENG Lamei. Therapeutic potential of BMSCs for premature ovarian failure in mice[J]. J Cent South Univ(Med Sci), 2018, 43(1): 7-13. |
[16] | Manshadi MD, Navid S, Hoshino Y, et al. The effects of human menstrual blood stem cells-derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure[J]. Microsc Res Tech, 2019, 82(6): 635-642. |
[17] | Castrillon DH, Miao L, Kollipara R, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a[J]. Science, 2003, 301(5630): 215-223. |
[18] | Emanuele P, Shakib O, Marc M, et al. Constitutively active Foxo3 in oocytes preserves ovarian reserve in mice[J]. Nat Commun, 2013, 4: 1843-1856. doi: 10.1038/ncomms2861. |
[19] | Woon PC, Keun-Soo K, Sohyun B, et al. Cytokine secretion profiling of human mesenchymal stem cells by antibody array[J]. Int J Stem Cells, 2009, 2(1): 59-68. |
[20] | Miller EA, Ge Z, Hedgpeth V, et al. Steroidogenic responses of pig corpora lutea to insulin-like growth factor I(IGF-I)throughout the oestrous cycle[J]. Reproduction, 2003, 125(2): 241-249. |
[21] | 于佳, 相丽, 刘超群, 等. 大鼠骨髓间充质干细胞对卵巢早衰模型大鼠卵巢中胰岛素样生长因子1受体表达的影响[J]. 世界最新医学信息文摘, 2017, 17(64): 1-2. YU Jia, XIANG Li, LIU Chaoqun, et al. Effect of rat bone marrow derived mesenchymal stem cells on expression of insulin-like growth factor 1 receptor of premature ovarian failure rats[J]. World Latest Medicne Information(Electronic Version), 2017, 17(64): 1-2. |
[22] | Garfield AS, Cowley M, Smith FM, et al. Distinct physiological and behavioural functions for parental alleles of imprinted GRB10[J]. Nature, 2011, 469(7331): 534-542. |
[23] | Li L, Li X, Zhu Y, et al. Growth receptor binding protein 10 inhibits glucose-stimulated insulin release from pancreatic β-cells associated with suppression of the insulin/insulin-like growth factor-1 signalling pathway[J]. Clin Exp Pharmacol Physiol, 2013, 40(12): 841-848. |
[24] | Smith FM, Holt LJ, Garfield AS, et al. Mice with a disruption of the imprinted GRB10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life[J]. Mol Cell Biol, 2007, 27(16): 5871-5886. |
[25] | He ZY, Wang HY, Zhou X, et al. Evaluation of vitrification protocol of mouse ovarian tissue by effect of DNA methyltransferase-1 and paternal imprinted growth factor receptor-binding protein 10 on signaling pathways[J]. Cryobiology, 2018, 80: 89-95. doi: 10.1016/j.cryobiol. 2017.11.008. |
[1] | 侯巧妮,马会明,相丽,何艳桃,徐仙,陈冬梅,张雪玉. 人胎盘间充质干细胞移植对化疗所致卵巢早衰大鼠卵巢功能的影响[J]. 山东大学学报 (医学版), 2019, 57(2): 52-60. |
[2] | 秦莹莹,张茜蒻. 卵巢早衰的免疫学病因及免疫干预研究进展[J]. 山东大学学报 (医学版), 2018, 56(4): 33-37. |
[3] | 佟超. 线粒体异常与卵巢早衰[J]. 山东大学学报 (医学版), 2018, 56(4): 23-27. |
[4] | 周雪,王燕蓉,田龙,马良宏,颜贝,田稼,张帆,周岳,王红燕. 冷冻复苏过程对人精子印记基因SNRPN和GRB10DNA甲基化及表达的影响[J]. 山东大学学报(医学版), 2017, 55(1): 54-59. |
[5] | 马宏岩,郭军 . IGF1和IGF1R在甲状腺乳头状癌组织中的表达[J]. 山东大学学报(医学版), 2006, 44(9): 905-907. |
|