您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (8): 20-38.doi: 10.6040/j.issn.1671-7554.0.2018.1016

• • 上一篇    

健康保险精算理论与方法体系

谢远涛,李政宵   

  1. 对外经济贸易大学保险学院, 北京 100029
  • 发布日期:2022-09-27
  • 通讯作者: 谢远涛. E-mail:xieyuantao@uibe.edu.cn
  • 基金资助:
    国家社科基金(18BJY212);对外经济贸易大学学术创新团队课题(CXTD9-04)

Theory and methodology on health insurance actuarial science research

XIE Yuantao, LI Zhengxiao   

  1. School of Insurance, University of International Business and Economics, Beijing 100029, China
  • Published:2022-09-27

摘要: 健康保险精算中,需要结合保险公司的赔付数据、医疗机构的临床数据和患者个人数据进行建模分析,从精算的思路看主要分为费率厘定和准备金评估,保费收取后,传统保险只是被动管理风险,从主动风险管理角度来看,还需要考虑后续的基金分配问题。费率厘定主要包含基于损失分布的费率厘定,传统的分类费率厘定、经验费率厘定、整合费率厘定,以及基于发病率的定价模型和基于依赖视角的调整模型;准备金评估主要包含基于流量三角形的确定型准备金评估和随机准备金评估,以及用于分析0赔案的操作时间的评估模型;基金管理本质上属于一个优化模型,是一个非常广阔的模型框架。讨论了简单的基金分配问题,并综合介绍了发病率、马氏链、发病率期权、偿付能力、风险监管等相关的研究框架和研究方法。

关键词: 健康保险, 精算, 费率厘定, 经验费率, 准备金评估, 流量三角, 基金分配

Abstract: It is necessary to combine the compensation data of insurance companies, clinical diagnostic data of medical institutions and personal data of patients for health actuarial science modeling and analysis. From the actuarial point of view, it is mainly divided into rate-making and reserve evaluation. The traditional insurance focuses on passive risk 山 东 大 学 学 报 (医 学 版)57卷8期 -谢远涛,等.健康保险精算理论与方法体系 \=-management, while premium fund allocation becomes important from the perspective of active risk management. Rate-making can be classified into rough estimation method, regression models method, loss distribution method and empirical frequency method. It can also be classified into traditional classification rate, credibility rate, integrated rate, as well as pricing model based on incidence and adjustment model based on dependency perspective, from the point of view of pricing process and rate characteristics. Reserve evaluation includes deterministic reserve evaluation and stochastic reserve evaluation. The basic tool is the run-off triangle and the improved analysis framework based on operation time that dealing with the zero-claim problem. The deterministic model has developed to Mack model and Munich model, and the stochastic model has developed from generalized linear models to hierarchy models, and the stochastic effect has been extended. Premium fund allocation is essentially an optimization model and a very broad model framework. In the current paper, we discusses a simple fund allocation problem, and give a list of related research frameworks and methods, such as morbidity, Markov chain, morbidity options, solvency, risk supervision and so on.

Key words: Health insurance, Actuarial science, Rate-making, Credibility premium, Reserve evaluation, Run-off triangle, Premium fund allocation

中图分类号: 

  • O212/F222.3
[1] Terry K. ACOs need claims data for analytics, Expert Says[N]. Information Week, 2013-09-16[2018-09-01].
[2] Frees EW, Gao J, Rosenberg MA. Predicting the frequency and amount of health care expenditures[J]. NAAJ, 2011, 15(3): 377-392.
[3] Frees EW, Jin X, Lin X. Actuarial applications of multivariate two-part regression models[J]. Annals of Actuarial Science, 2013, 7(2): 258-287.
[4] 徐昕, 袁卫, 孟生旺. 零膨胀广义泊松回归模型与保险费率厘定[J]. 数学的实践与认识, 2009, 39(24): 99-107. XU Xin, YUAN Wei, MENG Shengwang. Zero-expansion generalized Poisson regression model and premium rate determination[J]. Mathematical Practice and Understanding, 2009, 39(24): 99-107.
[5] Yip KC, Yau KK. On modeling claim frequency data in general insurance with extra zeros[J]. Insurance: Mathematics and Economics, 2005, 36(2): 153-163.
[6] 孟生旺. 过离散次数分布模型的尾部特征[J]. 数理统计与管理, 2009, 28(3): 449-456. MENG Shengwang. Tail characteristics of the discrete number distribution model[J]. Mathematical Statistics and Management, 2009, 28(3): 449-456.
[7] Klein N, Kneib T, Lang S. Bayesian generalized additive models for location, scale, and shape for zero-inflated and overdispersed count data[J]. JASA, 2015, 110(509): 405-419.
[8] Hogg RV, Klugman SA. Loss distributions[M]. Toronto: John Wiley & Sons, 2009: 125-179.
[9] Klugman SA, Panjer HH, Willmot GE. Loss models: from data to decisions[M]. Canada: John Wiley & Sons, 2012: 29-78.
[10] Hartman BM, Groendyke C. Model selection and averaging in financial risk management[J]. NAAJ, 2013,17(3): 216-228.
[11] Azzalini A, Del CT, Kotz S. Log-skew-normal and log-skew-t distributions as models for family income data[J]. Journal of Income Distribution, 2002,11(3-4): 12-20.
[12] Landsman Z, Makov U, Shushi T. Tail conditional moments for elliptical and log-elliptical distributions[J]. Insurance: Mathematics and Economics, 2016(71): 179-188. doi:10.1016/j.insmatheco.2016.09.001
[13] Bhati D, Ravi S. On generalized log-Moyal distribution: a new heavy tailed size distribution[J]. Insurance: Mathematics and Economics, 2018(79): 247-259. doi:10.1016/j.insmatheco.2018.02.002
[14] Bagnato L, Punzo A. Finite mixtures of unimodal beta and gamma densities and the k-bumps algorithm[J]. Comp Stat, 2013, 28(4): 1571-1597.
[15] Calderín-Ojeda E, Kwok CF. Modeling claims data with composite Stoppa models[J]. Scand Actuar J, 2016(9): 817-836. doi: 10.1080/03461238.2015.1034763.
[16] Nadarajah S, Bakar SA. New composite models for the Danish fire insurance data[J]. Scand Actuar J, 2014(2): 180-187. doi: 10.1080/03461238.2012.695748.
[17] Scollnik DP, Sun C. Modeling with weibull-pareto models[J]. NAAJ, 2012, 16(2): 260-272.
[18] Scollnik DP. On composite lognormal-Pareto models[J]. Scand Actuar J, 2007(1): 20-33. doi: 10.1080/03461230601110447.
[19] Bakar SA, Hamzah N, Maghsoudi M, et al. Modeling loss data using composite models[J]. Insurance: Mathematics and Economics, 2015(61): 146-154. doi:10.1016/j.insmatheco.2014.08.008.
[20] Brahimi B, Meraghni D, Necir A, et al. Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses[J]. Insurance: Mathematics and Economics, 2011, 49(3): 325-334.
[21] Ahn S, Kim JH, Ramaswami V. A new class of models for heavy tailed distributions in finance and insurance risk[J]. Insurance: Mathematics and Economics, 2012, 51(1): 43-52.
[22] Benkhelifa L. Kernel-type estimator of the reinsurance premium for heavy-tailed loss distributions[J]. Insurance: Mathematics and Economics, 2014(59): 65-70. doi:10.1016/j.insmatheco.2014.08.006.
[23] Reynkens T, Verbelen R, Beirlant J, et al. Modelling censored losses using splicing: a global fit strategy with mixed Erlang and extreme value distributions[J]. Insurance: Mathematics and Economics, 2017(77): 65-77. doi:10.2139/ssm.2872107.
[24] Punzo A, Bagnato L, Maruotti A. Compound unimodal distributions for insurance losses[J]. Insurance: Mathematics and Economics, 2018(81): 95-107.
[25] Bernardi M, Maruotti A, Petrella L. Skew mixture models for loss distributions: a Bayesian approach[J]. Insurance: Mathematics and Economics, 2012, 51(3): 617-623.
[26] Verbelen R, Gong L, Antonio K, et al. Fitting mixtures of Erlangs to censored and truncated data using the EM algorithm[J]. ASTIN Bulletin: the Journal of the IAA, 2015, 45(3): 729-758.
[27] Miljkovic T, Grün B. Modeling loss data using mixtures of distributions[J]. Insurance: Mathematics and Economics, 2016(70): 387-396. doi:10.1016/j.insmatheco.2016.06.019.
[28] Jørgensen B, Paes MC. Fitting Tweedies compound Poisson model to insurance claims data[J]. Scand Actuar J, 1994(1): 69-93. doi: 10.1080/03461238.1994.10413930.
[29] 孟生旺, 李政宵. 基于随机效应零调整回归模型的保险损失预测[J]. 统计与信息论坛, 2015,30(12): 3-9. MENG Shengwang, LI Zhengxiao. Insurance loss prediction based on zero-adjustment regression model with random effects[J]. Statistics and Information Forum, 2015, 30(12): 3-9.
[30] 孟生旺. 广义线性模型在汽车保险定价的应用[J]. 数理统计与管理, 2007,26(1): 24-29. MENG Shengwang. Application of generalized linear model in automobile insurance pricing[J]. Mathematical Statistics and Management, 2007, 26(1): 24-29.
[31] MacCullagh P. Generalized linear models[M]. Boca Raton: CRC press, 1989: 48-93.
[32] Haberman S, Renshaw AE. Generalized linear models and actuarial science[J]. Journal of the Royal Statistical Society, 1996, 45(4): 407-436.
[33] De JP, Heller GZ. Generalized linear models for insurance data[M]. New York: Cambridge University Press, 2008: 64-80.
[34] Cumming RB, Knutson D, Cameron BA, et al. A comparative analysis of claims-based methods of health risk assessment for commercial populations[R]. Illinois: Society of Actuaries, 2002: 1-85. doi: 10.1002/0471752010.ch25
[35] Winkelman R, Mehmud S. A comparative analysis of claims-based tools for health risk assessment[R]. Illinois: Society of Actuaries, 2007: 1-61. doi:10.1002/0471752010.ch25.
[36] Mehmud SM. Nontraditional variables in healthcare risk adjustment[R]. Illinois: Society of Actuaries, 2013: 1-115.
[37] Duncan IG. Healthcare risk adjustment and predictive modeling[M]. Connecticut: Actex Publications, 2011: 17-31.
[38] Fellingham GW, Kottas A, Hartman BM. Bayesian nonparametric predictive modeling of group health claims[J]. Insurance: Mathematics and Economics, 2015(60): 1-10. doi: 10.1016/j.insmatheco.2014.10.011.
[39] Rosenberg MA, Farrell PM. Predictive modeling of costs for a chronic disease with acute high-cost episodes[J]. NAAJ, 2008, 12(1): 1-19.
[40] Bertsimas D, Bjarnadóttir MV, Kane MA, et al. Algorithmic prediction of health-care costs[J]. Operations Research, 2008, 56(6): 1382-1392.
[41] Ohlsson E, Johansson B. Non-life insurance pricing with generalized linear models[M]. New York: Springer, 2010: 71-97.
[42] Kuhn M, Johnson K. Applied predictive modeling[M]. New York: Springer, 2013: 1-53.
[43] Henckaerts R, Antonio K, Clijsters M, et al. A data driven binning strategy for the construction of insurance tariff classes[J]. Scand Actuar J, 2018(1): 1-25. doi: 10.1080/03461238.2018.1429300.
[44] Rue H, Held L. Gaussian Markov random fields: theory and applications[M]. Boca Raton: CRC Press, 2005: 32-71.
[45] 孟生旺. 汽车保险的精算统计模型[M]. 北京: 中国统计出版社, 2014: 1-32.
[46] Duncan I, Loginov M, Ludkovski M. Testing alternative regression frameworks for predictive modeling of health care costs[J]. NAAJ, 2016, 20(1): 65-87.
[47] 谢远涛, 李政宵. 基于联合定价模型的奖惩因子的扩展与比较[J]. 统计与信息论坛, 2015,177(6): 33-39. XIE Yuantao, LI Zhengxiao. Extension and comparison of bonus-malus factor based on joint pricing models[J].Statistics & Information Forum, 2015, 177(6): 33-39.
[48] Frangos NE, Vrontos SD. Design of optimal bonus-malus systems with a frequency and a severity component on an individual basis in automobile insurance[J]. Astin Bulletin, 2001, 31(1): 1-22.
[49] Pinquet J. Designing optimal bonus-malus systems from different types of claims[J]. Astin Bulletin, 1998, 28(2): 205-220.
[50] Frees EW, Young VR, Luo Y. A longitudinal data analysis interpretation of credibility models[J]. Insurance: Mathematics and Economics, 1999, 24(3): 229-247.
[51] 李政宵, 谢远涛,蒋涛. 基于线性混合模型的风险相依信度模型构建[J]. 统计与决策, 2015(11): 31-34. doi: 10.13546/j.cnki.tjyjc.2015.11.007. LI Zhengxiao, XIE Yuantao, JIANG Tao. Linear mixed models and credibility theory for dependent risks[J]. Statistics and Decision, 2015(11): 31-34. doi: 10.13546/j.cnki.tjyjc.2015.11.007.
[52] Antonio K, Beirlant J. Actuarial statistics with generalized linear mixed models[J]. Insurance: Mathematics and Economics, 2007, 40(1): 58-76.
[53] 谢远涛, 杨娟. 广义Gamma分布簇线性混合模型的收缩估计[J]. 统计与决策,2015,27(5): 37-40. XIE Yuantao, YANG Juan. Shrinkage estimate for generalized linear mixed models based on generalized gamma distribution[J]. Statistics and Decision, 2015, 27(5): 37-40.
[54] 谢远涛, 杨娟. 广义Gamma分布簇广义线性混合模型的构建[J]. 统计研究, 2010,27(10): 75-80. XIE Yuantao, YANG Juan. Generalized linear mixed models based on generalized gamma distribution[J]. Statistical Research, 2010, 27(10): 75-80.
[55] 康萌萌. 基于广义线性混合模型的经验费率厘定[J]. 统计与信息论坛, 2009, 24(7): 51-56. KANG Mengmeng. Experiential rate determination based on generalized linear mixed model[J]. Forum on Statistics and Information, 2009, 24(7): 51-56.
[56] 康萌萌, 孟生旺. 基于MCMC模拟和伪似然估计法的交叉分类信度模型费率厘定[J]. 统计与信息论坛, 2014, 29(2): 34-39. KANG Mengmeng, MENG Shengwang. Cross-classification reliability model rate determination based on MCMC simulation and pseudo-likelihood estimation[J]. Statistics and Information Forum, 2014, 29(2): 34-39.
[57] Xie YT, Li ZX, Parsa RA. Extension and application of credibility models in predicting claim frequency[J]. Math Probl Eng, 2018(1): 1-8.doi:10.1155/2018/6250686.
[58] 谢远涛, 毛羽. 基于进展时间和操作时间的两步广义线性混合模型非寿险准备金估计[J]. 保险研究, 2016(11): 68-77. doi: 10.13497/j.cnki.is.2016.11.006. XIE Yuantao, MAO Yu. Two-step generalized linear mixed models based on development time and operational time in non-life insurance loss reserving[J]. Insurance Studies, 2016(11): 68-77. doi: 10.13497/j.cnki.is.2016.11.006.
[59] 谢远涛, 杨娟. 基于操作时间和广义线性混合模型的准备金评估技术研究[J]. 保险研究, 2014(3): 54-62. doi: 10.13497/j.cnki.is.2014.03.001. XIE Yuantao, YANG Juan. Research on claims reserving based on operational time and generalized linear mixed models[J]. Insurance Studies, 2014(3): 54-62. doi: 10.13497/j.cnki.is.2014.03.001.
[60] 仇春涓, 陈滔. 我国补偿型住院医疗保险费率研究——基于理赔成本假设的分析[J]. 上海经济研究, 2014(1): 111-121. doi: 10.19626/j.cnki.cn31-1163/f.2014.01.011. QIU Chunjuan, CHEN Tao. Research on the rate of compensatory hospitalization medical insurance in China: analysis based on the cost hypothesis of claims[J]. Shanghai Economic Research, 2014(1): 111-121. doi: 10.19626/j.cnki.cn31-1163/f.2014.01.011.
[61] Olivieri A, Pitacco E. Life insurance: pricing[M]. Heidelberg: Springer, 2011: 71-134.
[62] Powell D. Optimal health insurance and the distortionary effects of the tax subsidy[EB/OL].(2012-12-19)[2018-09-03]. https: //ssrn.com/abstract=2212484.
[63] Carter LR, Lee RD. Modeling and forecasting U.S. sex differentials in mortality[J]. International Journal of Forecasting, 1992, 8(3): 393-411.
[64] Renshaw AE, Haberman S. A cohort-based extension to the Lee-Carter model for mortality reduction factors[J]. Insurance: Mathematics and Economics, 2006, 38(3): 556-570.
[65] Reither EN, Masters RK, Yang YC, et al. Should age-period-cohort studies return to the methodologies of the 1970s?[J]. Social Science & Medicine, 2015(128): 356-365. doi:10.1016/j.socsimed.2015.01.011.
[66] Bell A. Life-course and cohort trajectories of mental health in the UK, 1991-2008 — A multilevel age-period-cohort analysis[J]. Social Science & Medicine, 2014(120): 21-30. doi:10.1016/j.socscimed.2014.09.008.
[67] Cairns AJG, Blake D, Dowd K. A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration[J]. Journal of Risk & Insurance, 2010, 73(4): 687-718.
[68] Cairns AJG, Blake D, Dowd K, et al. A quantitative comparison of stochastic mortality models using data from England & Wales and the United States[J]. NAAJ, 2009, 13(1): 1-35.
[69] Cairns AJG, Blake D, Dowd K, et al. Mortality density forecasts: an analysis of six stochastic mortality models[J]. Insurance: Mathematics and Economics, 2011, 48(3): 355-367.
[70] Hainaut D. Multidimensional Lee-Carter model with switching mortality processes[J]. Insurance: Mathematics and Economics, 2012, 50(2): 236-246.
[71] 王晓军, 黄顺林. 中国人口死亡率随机预测模型的比较与选择[J]. 人口与经济, 2011(1): 82-86. WANG Xiaojun, HUANG Shunlin. Comparison and selection of random prediction models for population mortality in china[J]. Population and Economy, 2011(1): 82-86.
[72] 何颖媛, 刘贯春. 两因子随机死亡率状态空间模型及长寿风险测度[J]. 财经理论与实践, 2014, 35(5): 24-28. HE Yingyuan, LIU Guanchun. Two-factor random mortality state space model and longevity risk measurement[J]. Finance Manager Theory and Practice, 2014, 35(5): 24-28.
[73] Debón A, Martínez-Ruiz F, Montes F. A geostatistical approach for dynamic life tables: the effect of mortality on remaining lifetime and annuities[J]. Insurance: Mathematics and Economics, 2010, 47(3): 327-336.
[74] Jöreskog KG, Olsson UH, Fan YW. Multivariate analysis with LISREL[M]. New York: Springer, 2016: 121-210.
[75] Xie YT, Yang J, Jiang CG, et al. Incidence, dependence structure of disease, and rate making for health insurance[J]. Math Probl Eng, 2018(1): 1-13. doi: 10.1155/2018/4265801.
[76] 邓聚龙. 灰色系统理论简介[J]. 内蒙古电力技术, 1993(3): 51-52. DENG Julong. Introduction to grey system theory[J]. Inner Mongolia Electric Power Technology, 1993(3): 51-52.
[77] 黄春萍, 倪宗瓒. 灰色模型在预测肺结核发病率中的应用[J]. 现代预防医学, 2002, 29(6): 791-793. HUANG Chunping, NI Zongzan. Application of grey model in predicting the incidence of tuberculosis[J]. Modern Preventive Medicine, 2002, 29(6): 791-793.
[78] 罗燕, 吴永. 基于分层Copula理论的股市联动性测度[J]. 重庆理工大学学报, 2016, 30(11): 171-176. LUO Yan,WU Yong. Stock market linkage measure based on Hierarchical Copula theory[J]. Journal of Chongqing University of Technology, 2016, 30(11): 171-176.
[79] 贺学强. 动态分层阿基米德Copula模型的构建与应用[J]. 统计与决策, 2010(13): 4-8. doi: 10.13546/j.cnki.tjyjc.2010.13.001. HE Xueqiang. Construction and application of dynamic hierarchical Archimedes Copula model[J]. Statistics and Decision, 2010(13): 4-8. doi: 10.13546/j.cnki.tjyjc.2010.13.001.
[80] 张连增, 胡祥. 基于分层阿基米德Copula的金融时间序列的相关性分析[J]. 统计与信息论坛, 2014, 165(6): 34-40. ZHANG Lianzeng, HU Xiang. Correlation analysis of financial time series based on Hierarchical Archimedes Copula[J]. Forum on Statistics and Information, 2014, 165(6): 34-40.
[81] Górecki J, Hofert M, Hole(ˇovern)a M. An approach to structure determination and estimation of hierarchical Archimedean Copulas and its application to Bayesian classification[J]. JIIS, 2015, 46(1): 21-59.
[82] Savu C, Trede M. Hierarchies of Archimedean copulas[J]. Quantitative Finance, 2010, 10(3): 295-304.
[83] Sklar M. Fonctions de Répartition À N Dimensions Et Leurs Marges[J]. Publinststatistunivparis, 1959(8): 229-231.
[84] Mack T. Distribution-free calculation of the standard error of chain ladder reserve estimates[J]. Astin Bulletin, 1993, 23(2): 213-225.
[85] Quarg G, Mack T. Munich chain ladder[J]. Blätter Der Dgvfm, 2004, 26(4): 597-630.
[86] 张连增, 段白鸽. 基于GLM的未决赔款准备金评估的随机性链梯法[J]. 财经理论与实践, 2012, 33(1): 22-28. ZHANG Lianzeng, DUAN Baige. Random chain ladder method based on GLM for assessing outstanding claims reserve[J]. Finance Manager Theory and Practice, 2012, 33(1): 22-28.
[87] Taylor G, Mcgurie G, Mcguire G. Loss reserving with glms: a case study[D]. Melbourne: University of Melbourne Institutional Repository, 2006.
[88] Verrall RJ. On the estimation of reserves from loglinear models[J]. Insurance Mathematics and Economics, 1991, 10(1): 75-80.
[89] Doray LG. UMVUE of the IBNR reserve in a lognormal linear regression model[J]. Insurance Mathematics and Economics, 1996, 18(1): 43-57.
[90] Wuthrich MV, Merz M. Stochastic claims reserving methods in insurance[M]. England: John Wiley & Sons, 2008: 257-321.
[91] Peters GW, Shevchenko PV, Wüthrich MV. Model uncertainty in claims reserving within Tweedies compound Poisson models[J]. Astin Bulletin, 2009, 39(1): 1-33.
[92] Ntzoufras I. Bayesian modeling using WinBUGS[J]. Chance, 2009, 25(2): 60-61.
[93] Taylor GC. Loss reserving — an actuarial perspective[M]. Boston: Kluwer Academic, 2000: 31-89.
[94] Jewell WS. Predicting IBNYR events and delays[J]. Astin Bulletin, 1990, 20(1): 93-111.
[95] Norberg R. Prediction of outstanding liabilities in non-life insurance[J]. Astin Bulletin, 1993, 23(1): 95-115.
[96] Topaloglou N, Vladimirou H, Zenios SA. CVaR models with selective hedging for international asset allocation[J]. Journal of Banking and Finance, 2002, 26(7): 1535-1561.
[97] Krokhmal P. Portfolio optimization with conditional value-at-risk obiective and constraints[J]. Journal of Risk, 2002(4): 11-27. doi:10.21314/JOR.2012.057.
[98] 张冀, 谢远涛, 杨娟. 风险依赖、一致性风险度量与投资组合——基于Mean-Copula-CVaR的投资组合研究[J]. 金融研究, 2016(10): 159-173. ZHANG Ji, XIE Yuantao, YANG Juan. Risk dependence, consistensy risk measurement and portfolio: based on mean-Copula-CVaR models[J]. Journal of Financial Research, 2016(10): 159-173.
[99] 谢远涛, 蒋涛, 杨娟. 基于尾部依赖的保险业系统性风险度量[J]. 系统工程理论与实践, 2014, 34(8): 1921-1931. XIE Yuantao, JIANG Tao, YANG Juan. Systemic risk measure in insurance industry based on tail dependence[J]. SETP, 2014, 34(8): 1921-1931.
[100] 肖宇谷, 孟生旺, 夏露. 中国汽车保险的最优索赔策略[J]. 运筹与管理, 2007, 16(2): 123-128. XIAO Yugu, MENG Shengwang, XIA Lu. Optimal claim strategy for China automobile insurance[J]. Operations and Management, 2007, 16(2): 123-128.
[101] 吕宏生, 何健敏, 胡小平. 基于模糊评价的创新基金动态分配方法[J]. 价值工程, 2006, 25(11): 138-140. LV Hongsheng, HE Jianmin, HU Xiaoping. Dynamic allocation of innovative funds based on fuzzy evaluation[J].Value Engineering, 2006, 25(11): 138-140.
[102] Farin E, Jäckel WH, Schalaster V. The quality assurance programme of the statutory health insurance funds in medical rehabilitation: results and further developments[J]. Gesundheitswesen, 2009, 71(3): 163-174.
[103] 陈滔, 任仁泉. 医疗费用影响因素和健康保险经营风险控制[J]. 财经科学, 2002(2): 87-90. doi: 10.3969/j.issn.1000-8306.2002.02.020. CHEN Tao, REN Renquan. Influencing factors of medical expenses and risk control of health insurance operation[J]. Finance and Economics, 2002(2): 87-90. doi: 10.3969/j.issn.1000-8306.2002.02.020.
[104] 孔静霞. 健康管理——商业健康保险发展的新契机[J]. 中小企业管理与科技, 2010(11): 157-158. doi: 10.3969/j.issn.1673-1069.2010.31.140. KONG Jingxia. Health management-a new opportunity for the development of commercial health insurance[J]. Management and Technology for SMEs, 2010(11): 157-158. doi: 10.3969/j.issn.1673-1069.2010.31.140.
[105] 孙祁祥, 郑伟, 锁凌燕, 等. 市场经济对保险业发展的影响: 理论分析与经验证据[J]. 金融研究, 2010(2): 158-172. doi:10.1360/972010-1084. SUN Qixiang, ZHENG Wei, SUO Lingyan, et al. The influence of market economy on the development of insurance industry: theoretical analysis and empirical evidence[J]. Financial Research, 2010(2): 158-172. doi:10.1360/972010-1084.
[106] Andersen HH, Grabka MM, Schwarze J. Premium rates, competition among health insurance funds and the health care reform 2007—an empirical analysis[J]. Jahrbücher Für Nationalökonomie Und Statistik, 2007, 227(5): 429-450.
[107] Zeidler J, Mittendorf T, Vahldiek G, et al. Comparative cost analysis of outpatient and inpatient rehabilitation for cardiac diseases[J]. Herz, 2008, 33(6): 440-447.
[108] Gavrilov G, Vlahugjorgievska E, Trajkovik V. Analysis of introducing e-services: a case study of health insurance fund of macedonia[J]. J Health Organ Manag, 2016, 30(3): 354-371.
[109] 李镒冲. ILO筹资模型与分布拟合方法在社会健康保险精算中的应用研究[D] , 成都: 四川大学, 2007.
[110] 杨百团. 山东省新农合基金分割理论、模型及实证研究[D]. 济南: 山东大学, 2010.
[111] 薛付忠. 健康医疗大数据驱动的健康管理学理论方法体系[J]. 山东大学学报(医学版), 2017, 55(6): 1-29. XUE Fuzhong. Healthcare big data-driven theory and methodology for health management[J]. Journal of Shandong University(Health Sciences), 2017, 55(6): 1-29.
[1] 薛付忠. 大数据背景下整合健康保险&健康维护的理论方法体系[J]. 山东大学学报 (医学版), 2019, 57(8): 1-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!